Abstract
Powder X-ray diffraction shows that K- and Ca-exchanged montmorillonites swell upon interacting with CO2 at ambient temperatures, depending on their initial hydration state. K-exchanged montmorillonite swells rapidly to a maximum d(001) of ∼12.2 Å. In contrast, Ca-exchanged montmorillonite swells more slowly, but reaches a maximum d(001) of ∼15.1 Å. Reaction kinetics differ significantly between the K- and Ca-exchanged montmorillonite complexes. Expansion of K-exchanged montmorillonite samples was rapid, occurring on time scales of tens of minutes or less. The Ca-exchanged montmorillonite samples continued to expand over periods up to 42 h. Aging of both K- and Ca-exchanged montmorillonite complexes at elevated CO2 pressure for 1-2 days resulted in greater stability when CO2 pressure was released. The observed intercalation reactions have important consequences for carbon sequestration: (1) CO2 absorption by swelling clays may represent a significant pathway for storage of CO2. (2) The swelling of smectites under CO2 pressure may have a significant impact on the permeability of caprock formations.
Original language | English |
---|---|
Pages (from-to) | 5623-5630 |
Number of pages | 8 |
Journal | Environmental Science and Technology |
Volume | 46 |
Issue number | 10 |
DOIs | |
Publication status | Published - 15 May 2012 |
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry