Wannier-Mott Excitons in Nanoscale Molecular Ices

Y.-J. Chen, Guillermo Muñoz Caro, Sofia Aparicio, Antonio Jiménez-Escobar, Jérôme Lasne, Alexander Rosu-Finsen, Martin R. S. McCoustra, Andrew M. Cassidy, David Field

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
53 Downloads (Pure)


The absorption of light to create Wannier-Mott excitons is a fundamental feature dictating the optical and photovoltaic properties of low bandgap, high permittivity semiconductors. Such excitons, with an electron-hole separation an order of magnitude greater than lattice dimensions, are largely limited to these semiconductors but here we find evidence of Wannier-Mott exciton formation in solid carbon monoxide (CO) with a band gap of >8 eV and a low electrical permittivity. This is established through the observation that a few degrees’ K change in deposition temperature can shift the electronic absorption spectra of solid CO by several hundred wave numbers, coupled with the recent discovery that deposition of CO leads to the spontaneous formation of electric fields within the film. These so-called spontelectric fields, here approaching 4 × 107 V m-1, are strongly temperature dependent. We find that a simple electrostatic model reproduces the observed temperature dependent spectral shifts on the basis of a Stark effect on a hole and electron residing several nm apart, identifying the presence of Wannier-Mott excitons. The spontelectric effect in CO simultaneously explains the long-standing enigma of the sensitivity of VUV spectra to the deposition temperature.
Original languageEnglish
Article number157703
JournalPhysical Review Letters
Issue number15
Publication statusPublished - 13 Oct 2017


Dive into the research topics of 'Wannier-Mott Excitons in Nanoscale Molecular Ices'. Together they form a unique fingerprint.

Cite this