TY - JOUR
T1 - Wannier-Mott Excitons in Nanoscale Molecular Ices
AU - Chen, Y.-J.
AU - Muñoz Caro, Guillermo
AU - Aparicio, Sofia
AU - Jiménez-Escobar, Antonio
AU - Lasne, Jérôme
AU - Rosu-Finsen, Alexander
AU - McCoustra, Martin R. S.
AU - Cassidy, Andrew M.
AU - Field, David
PY - 2017/10/13
Y1 - 2017/10/13
N2 - The absorption of light to create Wannier-Mott excitons is a fundamental feature dictating the optical and photovoltaic properties of low bandgap, high permittivity semiconductors. Such excitons, with an electron-hole separation an order of magnitude greater than lattice dimensions, are largely limited to these semiconductors but here we find evidence of Wannier-Mott exciton formation in solid carbon monoxide (CO) with a band gap of >8 eV and a low electrical permittivity. This is established through the observation that a few degrees’ K change in deposition temperature can shift the electronic absorption spectra of solid CO by several hundred wave numbers, coupled with the recent discovery that deposition of CO leads to the spontaneous formation of electric fields within the film. These so-called spontelectric fields, here approaching 4 × 107 V m-1, are strongly temperature dependent. We find that a simple electrostatic model reproduces the observed temperature dependent spectral shifts on the basis of a Stark effect on a hole and electron residing several nm apart, identifying the presence of Wannier-Mott excitons. The spontelectric effect in CO simultaneously explains the long-standing enigma of the sensitivity of VUV spectra to the deposition temperature.
AB - The absorption of light to create Wannier-Mott excitons is a fundamental feature dictating the optical and photovoltaic properties of low bandgap, high permittivity semiconductors. Such excitons, with an electron-hole separation an order of magnitude greater than lattice dimensions, are largely limited to these semiconductors but here we find evidence of Wannier-Mott exciton formation in solid carbon monoxide (CO) with a band gap of >8 eV and a low electrical permittivity. This is established through the observation that a few degrees’ K change in deposition temperature can shift the electronic absorption spectra of solid CO by several hundred wave numbers, coupled with the recent discovery that deposition of CO leads to the spontaneous formation of electric fields within the film. These so-called spontelectric fields, here approaching 4 × 107 V m-1, are strongly temperature dependent. We find that a simple electrostatic model reproduces the observed temperature dependent spectral shifts on the basis of a Stark effect on a hole and electron residing several nm apart, identifying the presence of Wannier-Mott excitons. The spontelectric effect in CO simultaneously explains the long-standing enigma of the sensitivity of VUV spectra to the deposition temperature.
U2 - 10.1103/PhysRevLett.119.157703
DO - 10.1103/PhysRevLett.119.157703
M3 - Article
SN - 0031-9007
VL - 119
JO - Physical Review Letters
JF - Physical Review Letters
IS - 15
M1 - 157703
ER -