Abstract
Solvent-solute interactions influence the mechanisms of chemical reactions in solution,but the response of the solvent is often slower than the reactive event. Here, we reportthat exothermic reactions of fluorine (F) atoms in d3-acetonitrile and d2-dichloromethaneinvolve efficient energy flow to vibrational motion of the deuterium fluoride (DF) productthat competes with dissipation of the energy to the solvent bath, despite strongsolvent coupling. Transient infrared absorption spectroscopy and molecular dynamicssimulations show that after DF forms its first hydrogen bond on a subpicosecond timescale, DF vibrational relaxation and further solvent restructuring occur over more than10 picoseconds. Characteristic dynamics of gas-phase F-atom reactions with hydrogencontainingmolecules persist in polar organic solvents, and the spectral evolution of the DFproducts serves as a probe of solvent reorganization induced by a chemical reaction.
Original language | English |
---|---|
Pages (from-to) | 530–533 |
Journal | Science |
Volume | 347 |
Issue number | 6221 |
DOIs | |
Publication status | Published - 30 Jan 2015 |
Fingerprint
Dive into the research topics of 'Vibrational relaxation and microsolvation of DF after F-atom reactions in polar solvents'. Together they form a unique fingerprint.Profiles
-
Stuart J. Greaves
- School of Engineering & Physical Sciences - Assistant Professor
- School of Engineering & Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering - Assistant Professor
- School of Engineering & Physical Sciences, Institute of Chemical Sciences - Assistant Professor
Person: Academic (Research & Teaching)