Value of Geologically Derived Features in Machine Learning Facies Classification

Julie Halotel*, Vasily Demyanov, Andy Gardiner

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)
88 Downloads (Pure)

Abstract

The aim of this work is to demonstrate how geologically interpretative features can improve machine learning facies classification with uncertainty assessment.Manual interpretation of lithofacies from wireline log data is traditionally performed by an expert, can be subject to biases, and is substantially laborious and time consuming for very large datasets. Characterizing the interpretational uncertainty in facies classification is quite difficult, but it can be very important for reservoir development decisions. Thus, automation of the facies classification process using machine learning is a potentially intuitive and efficient way to facilitate facies interpretation based on large-volume data. It can also enable more adequate quantification of the uncertainty in facies classification by ensuring that possible alternative lithological scenarios are not overlooked. An improvement of the performance of purely data-driven classifiers by integrating geological features and expert knowledge as additional inputs is proposed herein, with the aim of equipping the classifier with more geological insight and gaining interpretability by making it more explanatory. Support vector machine and random forest classifiers are compared to demonstrate the superiority of the latter. This study contrasts facies classification using only conventional wireline log inputs and using additional geological features. In the first experiment, geological rule-based constraints were implemented as an additional derived and constructed input. These account for key geological features that a petrophysics or geological expert would attribute to typical and identifiable wireline log responses. In the second experiment, geological interpretative features (i.e., grain size, pore size, and argillaceous content) were used as additional independent inputs to enhance the prediction accuracy and geological consistency of the classification outcomes. Input and output noise injection experiments demonstrated the robustness of the results towards systematic and random noise in the data. The aspiration of this study is to establish geological characteristics and knowledge to be considered as decisive data when used in machine learning facies classification.

Original languageEnglish
Pages (from-to)5–29
Number of pages25
JournalMathematical Geosciences
Volume52
Early online date16 Nov 2019
DOIs
Publication statusPublished - Jan 2020

Keywords

  • Lithofacies
  • Machine learning
  • Random forest
  • Support vector machine

ASJC Scopus subject areas

  • Mathematics (miscellaneous)
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'Value of Geologically Derived Features in Machine Learning Facies Classification'. Together they form a unique fingerprint.

Cite this