Validated respiratory drug deposition predictions from 2D and 3D medical images with statistical shape models and convolutional neural networks

Josh Williams, Haavard Ahlqvist, Alexander Cunningham, Andrew Kirby, Ira Katz, John Fleming, Joy Conway, Steve Cunningham, Ali Ozel, Uwe Wolfram

Research output: Contribution to journalArticlepeer-review

37 Downloads (Pure)

Abstract

For the one billion sufferers of respiratory disease, managing their disease with inhalers crucially influences their quality of life. Generic treatment plans could be improved with the aid of computational models that account for patient-specific features such as breathing pattern, lung pathology and morphology. Therefore, we aim to develop and validate an automated computational framework for patient-specific deposition modelling. To that end, an image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images. We evaluated the airway and lung morphology produced by our image processing framework, and assessed deposition compared to in vivo data. The 2D-to-3D image processing reproduces airway diameter to 9% median error compared to ground truth segmentations, but is sensitive to outliers of up to 33% due to lung outline noise. Predicted regional deposition gave 5% median error compared to in vivo measurements. The proposed framework is capable of providing patient-specific deposition measurements for varying treatments, to determine which treatment would best satisfy the needs imposed by each patient (such as disease and lung/airway morphology). Integration of patient-specific modelling into clinical practice as an additional decision-making tool could optimise treatment plans and lower the burden of respiratory diseases.

Original languageEnglish
Article numbere0297437
JournalPLoS ONE
Volume19
Issue number1
DOIs
Publication statusPublished - 26 Jan 2024

Keywords

  • Humans
  • Quality of Life
  • Neural Networks, Computer
  • Imaging, Three-Dimensional/methods
  • Image Processing, Computer-Assisted/methods
  • Lung/diagnostic imaging

Fingerprint

Dive into the research topics of 'Validated respiratory drug deposition predictions from 2D and 3D medical images with statistical shape models and convolutional neural networks'. Together they form a unique fingerprint.

Cite this