Abstract
In this and the following two chapters the focus moves away from networks which are controlled centrally by a base station to a hybrid cellular network which permits cellular operation as well as peer-to-peer operation. Essentially we consider multi-hop wireless networks based on opportunity-driven multiple access (ODMA) which will be shown to reduce the overall transmission power in a system, to be resilient to shadowing and to potentially increase the coverage compared with single-hop transmission. However, for simple receivers and low user density, the actual capacity of UTRA-TDD may be marginally reduced from the maximum non-relaying capacity. This chapter begins the study of ODMA based systems by analysing the implications of relaying in a cellular scenario compared to a conventional nonrelaying system. Initially the interference is analysed by investigating the effect of reduced transmitted power resulting from reduced path loss for a link. The effect of shadowing is considered and it is shown that a relaying system is able to benefit from increased zero mean lognormal shadowing by utilising the diversity of paths available. A correlated shadowing model is developed from a previous model considering both distance and angle of arrival (Klingenbrunn and Mogensen, 1999) to include the shadowing correlation between all transceivers, as they may all be available to receive in a relaying environment. It is shown that while this affects the interference pattern the perturbation is not significant.
Original language | English |
---|---|
Title of host publication | Next Generation Mobile Access Technologies |
Subtitle of host publication | Implementing TDD |
Publisher | Cambridge University Press |
Pages | 157-185 |
Number of pages | 29 |
ISBN (Electronic) | 9780511550904 |
ISBN (Print) | 9780521826228 |
DOIs | |
Publication status | Published - 2008 |
ASJC Scopus subject areas
- General Engineering