TY - JOUR
T1 - Using time-series similarity measures to compare animal movement trajectories in ecology
AU - Cleasby, Ian R.
AU - Wakefield, Ewan D.
AU - Morrissey, Barbara J.
AU - Bodey, Thomas W.
AU - Votier, Steven C.
AU - Bearhop, Stuart
AU - Hamer, Keith C.
N1 - Funding Information:
Gannet data was collected as part of a Natural Environment Research Council (Standard Grant NE/H007466/1) to KCH, SB, and SCV and Independent Research Fellowship NE/M017990/1) to EW.
Funding Information:
We thank Sir Hew Hamilton-Dalrymple for access to the Bass Rock and Maggie Sheddan and the Scottish Seabird Centre for logistical support. Fieldwork was carried out with approval from the British Trust for Ornithology and Scottish Natural Heritage. Additional thanks go to Robert J. M. Cleasby and Tony Inchpractice for advice on earlier drafts. We thank Rocio Joo and one anonymous reviewer for comments which improved the manuscript. All tracking data used in this manuscript are available at http://seabirdtracking.org.
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/11/21
Y1 - 2019/11/21
N2 - Identifying and understanding patterns in movement data are amongst the principal aims of movement ecology. By quantifying the similarity of movement trajectories, inferences can be made about diverse processes, ranging from individual specialisation to the ontogeny of foraging strategies. Movement analysis is not unique to ecology however, and methods for estimating the similarity of movement trajectories have been developed in other fields but are currently under-utilised by ecologists. Here, we introduce five commonly used measures of trajectory similarity: dynamic time warping (DTW), longest common subsequence (LCSS), edit distance for real sequences (EDR), Fréchet distance and nearest neighbour distance (NND), of which only NND is routinely used by ecologists. We investigate the performance of each of these measures by simulating movement trajectories using an Ornstein-Uhlenbeck (OU) model in which we varied the following parameters: (1) the point of attraction, (2) the strength of attraction to this point and (3) the noise or volatility added to the movement process in order to determine which measures were most responsive to such changes. In addition, we demonstrate how these measures can be applied using movement trajectories of breeding northern gannets (Morus bassanus) by performing trajectory clustering on a large ecological dataset. Simulations showed that DTW and Fréchet distance were most responsive to changes in movement parameters and were able to distinguish between all the different parameter combinations we trialled. In contrast, NND was the least sensitive measure trialled. When applied to our gannet dataset, the five similarity measures were highly correlated despite differences in their underlying calculation. Clustering of trajectories within and across individuals allowed us to easily visualise and compare patterns of space use over time across a large dataset. Trajectory clusters reflected the bearing on which birds departed the colony and highlighted the use of well-known bathymetric features. As both the volume of movement data and the need to quantify similarity amongst animal trajectories grow, the measures described here and the bridge they provide to other fields of research will become increasingly useful in ecology. Significance statement: As the use of tracking technology increases, there is a need to develop analytical techniques to process such large volumes of data. One area in which this would be useful is the comparison of individual movement trajectories. In response, a variety of measures of trajectory similarity have been developed within the information sciences. However, such measures are rarely used by ecologists who may be unaware of them. To remedy this, we apply five common measures of trajectory similarity to both simulated data and real ecological dataset comprising of movement trajectories of breeding northern gannets. Dynamic time warping and Fréchet distance performed best on simulated data. Using trajectory similarity measures on our gannet dataset, we identified distinct foraging clusters centred on different bathymetric features, demonstrating one application of such similarity measures. As new technology and analysis techniques proliferate across ecology and the information sciences, closer ties between these fields promise further innovative analysis of movement data.
AB - Identifying and understanding patterns in movement data are amongst the principal aims of movement ecology. By quantifying the similarity of movement trajectories, inferences can be made about diverse processes, ranging from individual specialisation to the ontogeny of foraging strategies. Movement analysis is not unique to ecology however, and methods for estimating the similarity of movement trajectories have been developed in other fields but are currently under-utilised by ecologists. Here, we introduce five commonly used measures of trajectory similarity: dynamic time warping (DTW), longest common subsequence (LCSS), edit distance for real sequences (EDR), Fréchet distance and nearest neighbour distance (NND), of which only NND is routinely used by ecologists. We investigate the performance of each of these measures by simulating movement trajectories using an Ornstein-Uhlenbeck (OU) model in which we varied the following parameters: (1) the point of attraction, (2) the strength of attraction to this point and (3) the noise or volatility added to the movement process in order to determine which measures were most responsive to such changes. In addition, we demonstrate how these measures can be applied using movement trajectories of breeding northern gannets (Morus bassanus) by performing trajectory clustering on a large ecological dataset. Simulations showed that DTW and Fréchet distance were most responsive to changes in movement parameters and were able to distinguish between all the different parameter combinations we trialled. In contrast, NND was the least sensitive measure trialled. When applied to our gannet dataset, the five similarity measures were highly correlated despite differences in their underlying calculation. Clustering of trajectories within and across individuals allowed us to easily visualise and compare patterns of space use over time across a large dataset. Trajectory clusters reflected the bearing on which birds departed the colony and highlighted the use of well-known bathymetric features. As both the volume of movement data and the need to quantify similarity amongst animal trajectories grow, the measures described here and the bridge they provide to other fields of research will become increasingly useful in ecology. Significance statement: As the use of tracking technology increases, there is a need to develop analytical techniques to process such large volumes of data. One area in which this would be useful is the comparison of individual movement trajectories. In response, a variety of measures of trajectory similarity have been developed within the information sciences. However, such measures are rarely used by ecologists who may be unaware of them. To remedy this, we apply five common measures of trajectory similarity to both simulated data and real ecological dataset comprising of movement trajectories of breeding northern gannets. Dynamic time warping and Fréchet distance performed best on simulated data. Using trajectory similarity measures on our gannet dataset, we identified distinct foraging clusters centred on different bathymetric features, demonstrating one application of such similarity measures. As new technology and analysis techniques proliferate across ecology and the information sciences, closer ties between these fields promise further innovative analysis of movement data.
KW - Information science
KW - Movement ecology
KW - Route fidelity
KW - Site fidelity
KW - Tracking data
KW - Trajectory clustering
UR - http://www.scopus.com/inward/record.url?scp=85075416739&partnerID=8YFLogxK
U2 - 10.1007/s00265-019-2761-1
DO - 10.1007/s00265-019-2761-1
M3 - Article
AN - SCOPUS:85075416739
SN - 0340-5443
VL - 73
JO - Behavioral Ecology and Sociobiology
JF - Behavioral Ecology and Sociobiology
M1 - 151
ER -