Use of unsupported and silica supported molybdenum carbide to treat chloroarene gas streams

Antonio de Lucas Consuegra, Patricia M. Patterson, Mark A. Keane

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

The gas phase catalytic hydrodechlorination (HDC) of mono- and di-chlorobenzenes (423 K = T = 593 K) over unsupported and silica supported Mo carbide (Mo2C) is presented as a viable means of detoxifying Cl-containing gas streams for the recovery/reuse of valuable chemical feedstock. The action of Mo2C/SiO2 is compared with MoO3/SiO2 and Ni/SiO2 (an established HDC catalyst). The pre- and post-HDC catalyst samples have been characterized in terms of BET area, TG-MS, TPR, TEM, SEM, H2 chemisorption/TPD and XRD analysis. Molybdenum carbide was prepared via a two step temperature programmed synthesis where MoO3 was first subjected to a nitridation in NH3 followed by carbidization in a CH4/H2 mixture to yield a face-centred cubic (a-Mo2C) structure characterized by a platelet morphology. Pseudo-first order kinetic analysis was used to obtain chlorobenzene HDC rate constants and the associated temperature dependences yielded apparent activation energies that decreased in the order MoO3/SiO2 (80 ± 5 kJ mol-1) ˜ MoO3 (78 ± 8 kJ mol-1) > Ni/SiO2 (62 ± 3 kJ mol-1) ˜ a-Mo2C (56 ± 6 kJ mol-1) ˜ a-Mo2C/SiO2 (53 ± 3 kJ mol-1). HDC activity was lower for the dechlorination of the dichlorobenzene reactants where steric hindrance influenced chloro-isomer reactivity. Supporting a-Mo2C on silica served to elevate HDC performance, but under identical reaction conditions, Ni/SiO2 consistently delivered a higher initial HDC activity. Nevertheless, the decline in HDC performance with time-on-stream for Ni/SiO2 was such that activity converged with that of a-Mo2C/SiO2 after three reaction cycles. A temporal loss of HDC activity (less extreme for the carbides) was observed for each catalyst that was studied and is linked to a disruption to supply of surface active hydrogen as a result of prolonged Cl/catalyst interaction. © 2006 Elsevier B.V. All rights reserved.

Original languageEnglish
Pages (from-to)227-239
Number of pages13
JournalApplied Catalysis B: Environmental
Volume65
Issue number3-4
DOIs
Publication statusPublished - 6 Jun 2006

Keywords

  • Chlorobenzene(s)
  • Hydrodechlorination
  • Molybdenum carbide
  • Nickel/silica

Fingerprint Dive into the research topics of 'Use of unsupported and silica supported molybdenum carbide to treat chloroarene gas streams'. Together they form a unique fingerprint.

Cite this