Universal scaling of spontaneous imbibition for arbitrary petrophysical properties: Water-wet and mixed-wet states and Handy's conjecture

K.S. Schmid, S. Geiger

    Research output: Contribution to journalArticle

    Abstract

    Spontaneous imbibition (SI) is a key process in many petrophysical applications, ranging from the mass transfer in fractured reservoirs during a waterflood to wettability characterization of rock samples, or steam migration in geothermal reservoirs. Scaling groups are an essential tool for upscaling laboratory data and modeling and describing SI. A general form has been debated for over 90 years, and several dozen specific groups have been proposed. Here, we give the first general scaling group for arbitrary wettability state, viscosity ratios, rock type, initial water content, and boundary conditions. The result is obtained by extending recent findings for water-wet systems but otherwise arbitrary properties (Schmid and Geiger, 2012) to the mixed-wet case. The group is based on the only known exact, general solution to Darcy's equation with capillarity, and we show that this solution can be viewed as the capillary analogue to the Buckley–Leverett solution for viscous dominated flow. Our group serves as a ‘master equation’ that contains many of the previously obtained groups as special cases, and its generality can be used to give the first predictive theory for the validity range of specific groups. Based on the universal group, we show that SI is best characterized by the cumulative inflow of the wetting phase and not by the movement of the wetting front, as has been conjectured. Furthermore, our results give strong evidence that Darcy's equation is suitable for describing SI, contrary to what has been hypothesized. The general correlation can be fitted by an exponential model for mass transfer that closely correlates 45 published water–oil, and water–air SI experiments obtained for widely different petrophysical properties.
    Original languageEnglish
    Pages (from-to)44-61
    Number of pages18
    JournalJournal of Petroleum Science and Engineering
    Volume101
    DOIs
    Publication statusPublished - Jan 2013

    Fingerprint

    scaling
    water
    wettability
    wetting
    mass transfer
    rocks
    viscous flow
    steam
    moisture content
    viscosity
    analogs
    boundary conditions

    Cite this

    @article{df5b9e3477bc45e282d2459ffb06ae1a,
    title = "Universal scaling of spontaneous imbibition for arbitrary petrophysical properties: Water-wet and mixed-wet states and Handy's conjecture",
    abstract = "Spontaneous imbibition (SI) is a key process in many petrophysical applications, ranging from the mass transfer in fractured reservoirs during a waterflood to wettability characterization of rock samples, or steam migration in geothermal reservoirs. Scaling groups are an essential tool for upscaling laboratory data and modeling and describing SI. A general form has been debated for over 90 years, and several dozen specific groups have been proposed. Here, we give the first general scaling group for arbitrary wettability state, viscosity ratios, rock type, initial water content, and boundary conditions. The result is obtained by extending recent findings for water-wet systems but otherwise arbitrary properties (Schmid and Geiger, 2012) to the mixed-wet case. The group is based on the only known exact, general solution to Darcy's equation with capillarity, and we show that this solution can be viewed as the capillary analogue to the Buckley–Leverett solution for viscous dominated flow. Our group serves as a ‘master equation’ that contains many of the previously obtained groups as special cases, and its generality can be used to give the first predictive theory for the validity range of specific groups. Based on the universal group, we show that SI is best characterized by the cumulative inflow of the wetting phase and not by the movement of the wetting front, as has been conjectured. Furthermore, our results give strong evidence that Darcy's equation is suitable for describing SI, contrary to what has been hypothesized. The general correlation can be fitted by an exponential model for mass transfer that closely correlates 45 published water–oil, and water–air SI experiments obtained for widely different petrophysical properties.",
    author = "K.S. Schmid and S. Geiger",
    year = "2013",
    month = "1",
    doi = "10.1016/j.petrol.2012.11.015, 2013",
    language = "English",
    volume = "101",
    pages = "44--61",
    journal = "Journal of Petroleum Science and Engineering",
    issn = "0920-4105",
    publisher = "Elsevier",

    }

    TY - JOUR

    T1 - Universal scaling of spontaneous imbibition for arbitrary petrophysical properties

    T2 - Water-wet and mixed-wet states and Handy's conjecture

    AU - Schmid, K.S.

    AU - Geiger, S.

    PY - 2013/1

    Y1 - 2013/1

    N2 - Spontaneous imbibition (SI) is a key process in many petrophysical applications, ranging from the mass transfer in fractured reservoirs during a waterflood to wettability characterization of rock samples, or steam migration in geothermal reservoirs. Scaling groups are an essential tool for upscaling laboratory data and modeling and describing SI. A general form has been debated for over 90 years, and several dozen specific groups have been proposed. Here, we give the first general scaling group for arbitrary wettability state, viscosity ratios, rock type, initial water content, and boundary conditions. The result is obtained by extending recent findings for water-wet systems but otherwise arbitrary properties (Schmid and Geiger, 2012) to the mixed-wet case. The group is based on the only known exact, general solution to Darcy's equation with capillarity, and we show that this solution can be viewed as the capillary analogue to the Buckley–Leverett solution for viscous dominated flow. Our group serves as a ‘master equation’ that contains many of the previously obtained groups as special cases, and its generality can be used to give the first predictive theory for the validity range of specific groups. Based on the universal group, we show that SI is best characterized by the cumulative inflow of the wetting phase and not by the movement of the wetting front, as has been conjectured. Furthermore, our results give strong evidence that Darcy's equation is suitable for describing SI, contrary to what has been hypothesized. The general correlation can be fitted by an exponential model for mass transfer that closely correlates 45 published water–oil, and water–air SI experiments obtained for widely different petrophysical properties.

    AB - Spontaneous imbibition (SI) is a key process in many petrophysical applications, ranging from the mass transfer in fractured reservoirs during a waterflood to wettability characterization of rock samples, or steam migration in geothermal reservoirs. Scaling groups are an essential tool for upscaling laboratory data and modeling and describing SI. A general form has been debated for over 90 years, and several dozen specific groups have been proposed. Here, we give the first general scaling group for arbitrary wettability state, viscosity ratios, rock type, initial water content, and boundary conditions. The result is obtained by extending recent findings for water-wet systems but otherwise arbitrary properties (Schmid and Geiger, 2012) to the mixed-wet case. The group is based on the only known exact, general solution to Darcy's equation with capillarity, and we show that this solution can be viewed as the capillary analogue to the Buckley–Leverett solution for viscous dominated flow. Our group serves as a ‘master equation’ that contains many of the previously obtained groups as special cases, and its generality can be used to give the first predictive theory for the validity range of specific groups. Based on the universal group, we show that SI is best characterized by the cumulative inflow of the wetting phase and not by the movement of the wetting front, as has been conjectured. Furthermore, our results give strong evidence that Darcy's equation is suitable for describing SI, contrary to what has been hypothesized. The general correlation can be fitted by an exponential model for mass transfer that closely correlates 45 published water–oil, and water–air SI experiments obtained for widely different petrophysical properties.

    U2 - 10.1016/j.petrol.2012.11.015, 2013

    DO - 10.1016/j.petrol.2012.11.015, 2013

    M3 - Article

    VL - 101

    SP - 44

    EP - 61

    JO - Journal of Petroleum Science and Engineering

    JF - Journal of Petroleum Science and Engineering

    SN - 0920-4105

    ER -