Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques

Gilles Puy*, Pierre Vandergheynst, Rémi Gribonval, Yves Wiaux

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)


We advocate a compressed sensing strategy that consists of multiplying the signal of interest by a wide bandwidth modulation before projection onto randomly selected vectors of an orthonormal basis. First, in a digital setting with random modulation, considering a whole class of sensing bases including the Fourier basis, we prove that the technique is universal in the sense that the required number of measurements for accurate recovery is optimal and independent of the sparsity basis. This universality stems from a drastic decrease of coherence between the sparsity and the sensing bases, which for a Fourier sensing basis relates to a spread of the origina signal spectrum by the modulation (hence the name "spread spectrum"). The approach is also efficient as sensing matrices with fast matrix multiplication algorithms can be used, in particular in the case of Fourier measurements. Second, these results are confirmed by a numerical analysis of the phase transition of the ℓ1-minimization problem. Finally, we show that the spread spectrum technique remains effective in an analog setting with chirp modulation for application to realistic Fourier imaging. We illustrate these findings in the context of radio interferometry and magnetic resonance imaging.

Original languageEnglish
Article number6
JournalEURASIP Journal on Advances in Signal Processing
Publication statusPublished - 2012

ASJC Scopus subject areas

  • Hardware and Architecture
  • Signal Processing
  • Electrical and Electronic Engineering


Dive into the research topics of 'Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques'. Together they form a unique fingerprint.

Cite this