Abstract
We demonstrate that, for a fermionic lattice system, the ground-state particle density uniquely determines the external potential except for the sites corresponding to nodes of the wave function, and the limiting case where the Pauli exclusion principle completely determines the occupation of all sites. Our fundamental finding completes, for this general class of systems, the one-to-one correspondence between ground states, their densities, and the external potential at the base of the Hohenberg-Kohn theorem. Moreover we demonstrate that the mapping from wave function to potential is unique not just for the ground state, but also for excited states. To illustrate our findings, we develop a practical inversion scheme to determine the external potential from a given density. Our results hold for a general class of lattice models, which includes the Hubbard model.
Original language | English |
---|---|
Article number | 63001 |
Number of pages | 5 |
Journal | Europhysics Letters |
Volume | 110 |
Issue number | 6 |
DOIs | |
Publication status | Published - 6 Jul 2015 |