Abstract
Underwater scenarios are challenging for visual Simultaneous Localization and Mapping (SLAM) due to limited visibility and intermittently losing structures in image views. In this paper, we propose a visual acoustic bundle adjustment system which fuses a camera and a Doppler Velocity Log (DVL) in a graph SLAM framework for reliable underwater localization and mapping. In order to fuse the vision with the acoustic measurements, an calibration algorithm is also designed to estimate extrinsic parameters between a camera and a DVL using features detected in scenes. Experimental results in a tank and an offshore wind farm show the proposed method can achieve better robustness and localization accuracy than pure visual SLAM, especially in visually challenging scenarios, and the extrinsic calibration parameters can be accurately estimated, even when initialized with a random guess.
Original language | English |
---|---|
Title of host publication | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) |
Publisher | IEEE |
Pages | 7647-7652 |
Number of pages | 6 |
ISBN (Electronic) | 9781665417143 |
DOIs | |
Publication status | Published - 16 Dec 2021 |
Event | 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems - Prague, Czech Republic Duration: 27 Sept 2021 → 1 Oct 2021 |
Conference
Conference | 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems |
---|---|
Abbreviated title | IROS 2021 |
Country/Territory | Czech Republic |
City | Prague |
Period | 27/09/21 → 1/10/21 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Software
- Computer Vision and Pattern Recognition
- Computer Science Applications