Abstract
Computed tomography (CT) imaging of the thorax is widely used for the detection and monitoring of pulmonary embolism (PE). However, CT images can contain artifacts due to the acquisition or the processes involved in image reconstruction. Radiologists often have to distinguish between such artifacts and actual PEs. We provide a proof of concept in the form of a scalable hypothesis testing method for CT, to enable quantifying uncertainty of possible PEs. In particular, we introduce a Bayesian Framework to quantify the uncertainty of an observed compact structure that can be identified as a PE. We assess the ability of the method to operate under high-noise environments and with insufficient data.
Original language | English |
---|---|
Article number | pgad404 |
Journal | PNAS Nexus |
Volume | 3 |
Issue number | 1 |
Early online date | 23 Jan 2024 |
DOIs | |
Publication status | Published - Jan 2024 |
Keywords
- Bayesian
- medical imaging
- optimization
- pulmonary embolism
- uncertainty quantification
ASJC Scopus subject areas
- General