Two-photon laser-assisted device alteration in silicon integrated-circuits

Keith A Serrels, Kent Erington, Dan Bodoh, Carl Farrell, Neel Leslie, Theodore R Lundquist, Praveen Vedagarbha, Derryck Telford Reid

Research output: Contribution to journalArticle

7 Citations (Scopus)
282 Downloads (Pure)

Abstract

Optoelectronic imaging of integrated-circuits has revolutionized device design debug, failure analysis and electrical fault isolation; however modern probing techniques like laser-assisted device alteration (LADA) have failed to keep pace with the semiconductor industry's aggressive device scaling, meaning that previously satisfactory techniques no longer exhibit a sufficient ability to localize electrical faults, instead casting suspicion upon dozens of potential root-cause transistors. Here, we introduce a new high-resolution probing technique, two-photon laser-assisted device alteration (2pLADA), which exploits two-photon absorption (TPA) to provide precise three-dimensional localization of the photo-carriers injected by the TPA process, enabling us to implicate individual transistors separated by 100 nm. Furthermore, we illustrate the technique's capability to reveal speed-limiting transistor switching evolution with an unprecedented timing resolution approaching 10 ps. Together, the exceptional spatial and temporal resolutions demonstrated here now make it possible to extend optical fault localization to sub-14 nm technology nodes.
Original languageEnglish
Pages (from-to)29083-29089
Number of pages7
JournalOptics Express
Volume21
Issue number24
DOIs
Publication statusPublished - 2 Dec 2013

Keywords

  • Semiconductors
  • Ultrafast lasers
  • Nonlinear microscopy

Fingerprint Dive into the research topics of 'Two-photon laser-assisted device alteration in silicon integrated-circuits'. Together they form a unique fingerprint.

  • Cite this

    Serrels, K. A., Erington, K., Bodoh, D., Farrell, C., Leslie, N., Lundquist, T. R., Vedagarbha, P., & Reid, D. T. (2013). Two-photon laser-assisted device alteration in silicon integrated-circuits. Optics Express, 21(24), 29083-29089. https://doi.org/10.1364/OE.21.029083