Tribology of monolayer films: Comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon

Brandon D. Booth, Steven G. Vilt, Clare McCabe, G. Kane Jennings

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)

Abstract

This Article presents a quantitative comparison of the frictional performance for monolayers derived from n-alkanethiolates on gold and n-alkyl trichlorosilanes on silicon. Monolayers were characterized by pin-ondisk tribometry, contact angle analysis, ellipsometry, and electrochemical impedance spectroscopy (EIS). Pin-on-disk microtribometry provided frictional analysis at applied normal loads from 10 to 1000 mN at a speed of 0.1 mm/s. At low loads (10 mN), methyl-terminated n-alkanethiolate self-assembled monolayers (SAMs) exhibited a 3-fold improvement in coefficient of friction over SAMs with hydroxyl- or carboxylic-acid-terminated surfaces. For monolayers prepared from both n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon, a critical chain length of at least eight carbons is required for beneficial tribological performance at an applied load of 9.8 mN. Evidence for disruption of chemisorbed alkanethiolate SAMs with chain lengths n ≤ 12 is shown through EIS analysis of tribology wear tracks. The direct comparison between the tribological stability of alkanethiolate and silane monolayers shows that monolayers prepared from n-octadecyl dimethylchlorosilane and n-octadecyl trichlorosilane withstood normal loads at least 30 times larger than those that damaged octadecanethiolate SAMs. Collectively, our results show that the tribological properties of monolayer films are dependent on their internal stabilities, which are influenced by cohesive chain interactions (van der Waals) and the adsorbate-substrate bond.

Original languageEnglish
Pages (from-to)9995-10001
Number of pages7
JournalLangmuir
Volume25
Issue number17
DOIs
Publication statusPublished - 1 Sept 2009

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Tribology of monolayer films: Comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon'. Together they form a unique fingerprint.

Cite this