TY - JOUR
T1 - Transmission, reflection, and trapping of collimated light beams in diffusive Kerr-like nonlinear media
AU - Varatharajah, P.
AU - Newell, A. C.
AU - Moloney, J. V.
AU - Aceves, A. B.
PY - 1990
Y1 - 1990
N2 - An earlier equivalent-particle theory, describing the propagation of a self-focused light channel at an oblique angle of incidence to the interface separating two nonlinear dielectric media [A. B. Aceves, J. V. Moloney, and A. C. Newell, J. Opt. Soc. Am. B 5, 559 (1988); Phys. Lett. A 129, 231 (1988); Phys. Rev. A 39, 1809 (1989); 39, 1828 (1989)], is extended to include diffusion of the nonlinear excitation within each medium. The theory replaces the computationally intensive problem of beam propagation by the much simpler and intuitive picture of the motion of an equivalent particle in an equivalent potential. This simpler Newtonian dynamical problem provides quantitative information on the asymptotes of the reflected, transmitted, or trapped channels as well as the stability of the latter as a function of increasing diffusion length. Our main results are that increased diffusion makes light transmission more difficult and tends to wash out the local equilibria of the equivalent potential representing unstable or stable TE nonlinear surface waves. © 1990 The American Physical Society.
AB - An earlier equivalent-particle theory, describing the propagation of a self-focused light channel at an oblique angle of incidence to the interface separating two nonlinear dielectric media [A. B. Aceves, J. V. Moloney, and A. C. Newell, J. Opt. Soc. Am. B 5, 559 (1988); Phys. Lett. A 129, 231 (1988); Phys. Rev. A 39, 1809 (1989); 39, 1828 (1989)], is extended to include diffusion of the nonlinear excitation within each medium. The theory replaces the computationally intensive problem of beam propagation by the much simpler and intuitive picture of the motion of an equivalent particle in an equivalent potential. This simpler Newtonian dynamical problem provides quantitative information on the asymptotes of the reflected, transmitted, or trapped channels as well as the stability of the latter as a function of increasing diffusion length. Our main results are that increased diffusion makes light transmission more difficult and tends to wash out the local equilibria of the equivalent potential representing unstable or stable TE nonlinear surface waves. © 1990 The American Physical Society.
UR - http://www.scopus.com/inward/record.url?scp=0000437754&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.42.1767
DO - 10.1103/PhysRevA.42.1767
M3 - Article
SN - 1050-2947
VL - 42
SP - 1767
EP - 1774
JO - Physical Review A
JF - Physical Review A
IS - 3
ER -