TY - JOUR
T1 - Transformations of Nanoenabled Copper Formulations Govern Release, Antifungal Effectiveness, and Sustainability throughout the Wood Protection Lifecycle
AU - Pantano, Daniele
AU - Neubauer, Nicole
AU - Navratilova, Jana
AU - Scifo, Lorette
AU - Civardi, Chiara
AU - Stone, Vicki
AU - von der Kammer, Frank
AU - Müller, Philipp
AU - Sobrido, Marcos Sanles
AU - Angeletti, Bernard
AU - Rose, Jerome
AU - Wohlleben, Wendel
PY - 2018/2/6
Y1 - 2018/2/6
N2 - Here we compare the standard European benchmark of wood treatment by molecularly dissolved copper amine (Cu-amine), also referred to as aqueous copper amine (ACA), against two nanoenabled formulations: copper(II)oxide nanoparticles (CuO NPs) in an acrylic paint to concentrate Cu as a barrier on the wood surface, and a suspension of micronized basic copper carbonate (CuCO3·Cu(OH)2) for wood pressure treatment. After characterizing the properties of the (nano)materials and their formulations, we assessed their effects in vitro against three fungal species: Coniophora puteana, Gloeophyllum trabeum, and Trametes versicolor, finding them to be mediated only partially by ionic transformation. To assess the use phase, we quantify both release rate and form. Cu leaching rates for the two types of impregnated wood (conventional and nanoenabled) are not significantly different at 172 ± 6 mg/m2, with Cu being released predominantly in ionic form. Various simulations of outdoor aging with release sampling by runoff, during condensation, by different levels of mechanical shear, all resulted in comparable form and rate of release from the nanoenabled or the molecular impregnated woods. Because of dissolving transformations, the nanoenabled impregnation does not introduce additional concern over and above that associated with the traditional impregnation. In contrast, Cu released from wood coated with the CuO acrylate contained particles, but the rate was at least 100-fold lower. In the same ranking, the effectiveness to protect against the wood-decaying basidiomycete Coniophora puteana was significant with both impregnation technologies but remained insignificant for untreated wood and wood coated by the acrylic CuO. Accordingly, a lifecycle-based sustainability analysis indicates that the CuO acrylic coating is less sustainable than the technological alternatives, and should not be developed into a commercial product.
AB - Here we compare the standard European benchmark of wood treatment by molecularly dissolved copper amine (Cu-amine), also referred to as aqueous copper amine (ACA), against two nanoenabled formulations: copper(II)oxide nanoparticles (CuO NPs) in an acrylic paint to concentrate Cu as a barrier on the wood surface, and a suspension of micronized basic copper carbonate (CuCO3·Cu(OH)2) for wood pressure treatment. After characterizing the properties of the (nano)materials and their formulations, we assessed their effects in vitro against three fungal species: Coniophora puteana, Gloeophyllum trabeum, and Trametes versicolor, finding them to be mediated only partially by ionic transformation. To assess the use phase, we quantify both release rate and form. Cu leaching rates for the two types of impregnated wood (conventional and nanoenabled) are not significantly different at 172 ± 6 mg/m2, with Cu being released predominantly in ionic form. Various simulations of outdoor aging with release sampling by runoff, during condensation, by different levels of mechanical shear, all resulted in comparable form and rate of release from the nanoenabled or the molecular impregnated woods. Because of dissolving transformations, the nanoenabled impregnation does not introduce additional concern over and above that associated with the traditional impregnation. In contrast, Cu released from wood coated with the CuO acrylate contained particles, but the rate was at least 100-fold lower. In the same ranking, the effectiveness to protect against the wood-decaying basidiomycete Coniophora puteana was significant with both impregnation technologies but remained insignificant for untreated wood and wood coated by the acrylic CuO. Accordingly, a lifecycle-based sustainability analysis indicates that the CuO acrylic coating is less sustainable than the technological alternatives, and should not be developed into a commercial product.
UR - http://www.scopus.com/inward/record.url?scp=85041468883&partnerID=8YFLogxK
U2 - 10.1021/acs.est.7b04130
DO - 10.1021/acs.est.7b04130
M3 - Article
C2 - 29373787
AN - SCOPUS:85041468883
SN - 0013-936X
VL - 52
SP - 1128
EP - 1138
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 3
ER -