Towards efficient mid-infrared integrated photonic-lanterns

Alexander Arriola, Debaditya Choudhury, Robert R. Thomson

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We report the fabrication and characterization of a prototype integrated photonic-lantern for operation in the mid-IR (λ = 3.39 μm). The device was fabricated in a commercial gallium lanthanum sulphide chalcogenide glass substrate using ultrafast laser inscription. It was formed by inscribing a two-dimensional array of single-mode waveguides, which were then brought increasingly close together to form a single multimode waveguide. We demonstrate that the lantern successfully transforms particular single-mode states into well-defined coherent multimode states, with a loss comparable to that of a straight single-mode waveguide of the same length as the lantern (∼1.6 dB). We conclude, therefore, that the device should also work equally well in the reverse direction, thus enabling the low-loss conversion of mid-IR multimode states of light into discrete single-modes. This technology may be useful in a variety of emerging areas, including free-space laser communications and mid-infrared heterodyne spectroscopy.

Original languageEnglish
Article number125804
Number of pages5
JournalJournal of Optics
Volume17
Issue number12
DOIs
Publication statusPublished - 11 Nov 2015

Keywords

  • astrophotonics
  • chalcogenide
  • glass waveguides
  • integrated photonics
  • laser materials processing
  • microstructure fabrication

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Towards efficient mid-infrared integrated photonic-lanterns'. Together they form a unique fingerprint.

Cite this