Three-dimensional Protonic Conductivity in Porous Organic Cage Solids

Ming Liu, Linjiang Chen, Scott Lewis, Samantha Y. Chong, Marc A. Little, Tom Hasell, Iain M. Aldous, Craig M. Brown, Martin W. Smith, Carole A. Morrison, Laurence J. Hardwick, Andrew I. Cooper*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

147 Citations (Scopus)

Abstract

Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10-3 Scm-1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores.

Original languageEnglish
Article number12750
JournalNature Communications
Volume7
DOIs
Publication statusPublished - 13 Sept 2016

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Three-dimensional Protonic Conductivity in Porous Organic Cage Solids'. Together they form a unique fingerprint.

Cite this