Abstract
A theoretical CASSCF study of the reaction path for excited-state intramolecular proton transfer (ESIPT) for a model system derived from the UV absorber 2-(2'-hydroxyphenyl) benzotriazole without the fused benzo ring on the triazole has been carried out. A planar reaction path can be optimized but is shown to have no physical significance. The true reaction path involves twisted geometries. Adiabatic proton transfer is triggered by a charge-transfer from the phenol to the triazole group, and is followed by radiationless decay at the keto form. Along the nonplanar reaction path, there is a coupled proton and electron transfer in a manner similar to tryptophan. This rationalizes unexpected experimental results on the effect of electron withdrawing substituent groups on the photostability. The coupled proton and electron transfer is followed by a barrierless relaxation in the ground state to recover the enol form. An alternative photostabilization pathway from a phenyl localized state has also been documented and is similar to the channel 3 decay pathway in benzene photochemistry. Additionally, a long-lived intermediate for a twisted intramolecular charge-transfer (TICT) state has been identified as the species potentially responsible for the increase of blue fluorescence in strongly polar media.
Original language | English |
---|---|
Pages (from-to) | 2912-2922 |
Number of pages | 11 |
Journal | Journal of the American Chemical Society |
Volume | 126 |
Issue number | 9 |
DOIs | |
Publication status | Published - 10 Mar 2004 |
Keywords
- POTENTIAL-ENERGY SURFACES
- CONSISTENT-FIELD METHOD
- ULTRAVIOLET STABILIZERS
- ORGANIC-PHOTOCHEMISTRY
- CONICAL INTERSECTION
- MECHANISM
- BENZENE
- SOLVENT
- ABSORPTION
- DYNAMICS