The variances in cytokine production profiles from non- or activated THP-1, Kupffer cell and human blood derived primary macrophages following exposure to either alcohol or a panel of engineered nanomaterials

Ali Kermanizadeh, David M. Brown, Vicki Stone

Research output: Contribution to journalArticle

1 Citation (Scopus)
6 Downloads (Pure)

Abstract

The portfolio of cytokines is key to the function of macrophages as sentries of the innate immune system as well as being critical for the transition from innate to adaptive immunity. Cytokine bias is critical in the fate of macrophages into a continuum of inflammatory to anti-inflammatory macrophages. Due to advances in the field of toxicology, increasingly advanced multi-cellular in vitro safety assessment models are being developed in order to allow for a better predication of potential adverse effects in humans with many of these models include a macrophage population. The selection of the correct macrophage cells in these advanced in vitro models is critical for a physiologically relevant and realistic immune response. In this study we investigated cytokine response profile (IL1-β, IL6, IL10 and TNF-α) of activated and non-activated THP-1 (immortalized monocyte-like cell line), primary human Kupffer cells (liver resident macrophages) and human primary peripheral blood mononuclear cells following exposure of a panel of nanomaterials or ethanol. The data demonstrated that the THP-1 cell line are not great cytokine producers. The PBMC appear to be a good in vitro surrogate for circulating/pro-inflammatory macrophages but are not a suitable replacement for Kupffer cells. The findings from this study highlight the necessity for the selection of appropriate macrophages populations to meet the specific physiological requirements of in vitro experiment.

Original languageEnglish
Article numbere0220974
JournalPLoS ONE
Volume14
Issue number8
DOIs
Publication statusPublished - 8 Aug 2019

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint Dive into the research topics of 'The variances in cytokine production profiles from non- or activated THP-1, Kupffer cell and human blood derived primary macrophages following exposure to either alcohol or a panel of engineered nanomaterials'. Together they form a unique fingerprint.

  • Cite this