The roaming atom pathway in formaldehyde decomposition

Sridhar A Lahankar, Steven D Chambreau, David Townsend, Frank Suits, John Farnum, Xiubin Zhang, Joel M Bowman, Arthur G Suits

Research output: Contribution to journalArticlepeer-review

84 Citations (Scopus)

Abstract

We present a detailed experimental and theoretical investigation of formaldehyde photodissociation to H-2 and CO following excitation to the 2(1)4(1) and 2(1)4(3) transitions in S-1. The CO velocity distributions were obtained using dc slice imaging of single CO rotational states (v=0, j(CO)=5-45). These high-resolution measurements reveal the correlated internal state distribution in the H-2 cofragments. The results show that rotationally hot CO (j(CO)similar to 45) is produced in conjunction with vibrationally "cold" H-2 fragments (v=0-5): these products are formed through the well-known skewed transition state and described in detail in the accompanying paper. After excitation of formaldehyde above the threshold for the radical channel (H2CO -> H+HCO) we also find formation of rotationally cold CO (j(CO)=5-28) correlated to highly vibrationally excited H-2 (v=6-8). These products are formed through a novel mechanism that involves near dissociation followed by intramolecular H abstraction [D. Townsend , Science 306, 1158 (2004)], and that avoids the region of the transition state entirely. The dynamics of this "roaming" mechanism are the focus of this paper. The correlations between the vibrational states of H-2 and rotational states of CO formed following excitation on the 2(1)4(3) transition allow us to determine the relative contribution to molecular products from the roaming atom channel versus the conventional molecular channel. (c) 2006 American Institute of Physics.

Original languageEnglish
Article number044303
Number of pages10
JournalThe Journal of Chemical Physics
Volume125
Issue number4
DOIs
Publication statusPublished - 28 Jul 2006

Fingerprint

Dive into the research topics of 'The roaming atom pathway in formaldehyde decomposition'. Together they form a unique fingerprint.

Cite this