TY - GEN
T1 - The resonant center problem for a 2:-3 resonant cubic lotka–volterra system
AU - Giné, Jaume
AU - Christopher, Colin
AU - Prešern, Mateja
AU - Romanovski, Valery G.
AU - Shcheglova, Natalie L.
N1 - Publisher Copyright:
© Springer-Verlag Berlin Heidelberg 2012.
PY - 2012
Y1 - 2012
N2 - Using tools of computer algebra we derive the conditions for the cubic Lotka–Volterra system ẋ = x(2 − a20x2 − a11xy − a02y2), ẏ = y(−3+b20x2 + b11xy + b02y2) to be linearizable and to admit a first integral of the form Φ(x, y) =x3y2 + ··· in a neighborhood of the origin, in which case the origin is called a 2: −3 resonant center.
AB - Using tools of computer algebra we derive the conditions for the cubic Lotka–Volterra system ẋ = x(2 − a20x2 − a11xy − a02y2), ẏ = y(−3+b20x2 + b11xy + b02y2) to be linearizable and to admit a first integral of the form Φ(x, y) =x3y2 + ··· in a neighborhood of the origin, in which case the origin is called a 2: −3 resonant center.
KW - First integral
KW - Polynomial systems of differential equations
KW - Resonant center problem
UR - http://www.scopus.com/inward/record.url?scp=85016559832&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-32973-9_11
DO - 10.1007/978-3-642-32973-9_11
M3 - Conference contribution
AN - SCOPUS:85016559832
SN - 9783642329722
T3 - Lecture Notes in Computer Science
SP - 129
EP - 142
BT - Computer Algebra in Scientific Computing. CASC 2012
A2 - Gerdt, Vladimir P.
A2 - Koepf, Wolfram
A2 - Mayr, Ernst W.
A2 - Vorozhtsov, Evgenii V.
PB - Springer
T2 - 14th International Workshop on Computer Algebra in Scientific Computing 2012
Y2 - 3 September 2012 through 6 September 2012
ER -