TY - GEN

T1 - The resonant center problem for a 2:-3 resonant cubic lotka–volterra system

AU - Giné, Jaume

AU - Christopher, Colin

AU - Prešern, Mateja

AU - Romanovski, Valery G.

AU - Shcheglova, Natalie L.

N1 - Publisher Copyright:
© Springer-Verlag Berlin Heidelberg 2012.

PY - 2012

Y1 - 2012

N2 - Using tools of computer algebra we derive the conditions for the cubic Lotka–Volterra system ẋ = x(2 − a20x2 − a11xy − a02y2), ẏ = y(−3+b20x2 + b11xy + b02y2) to be linearizable and to admit a first integral of the form Φ(x, y) =x3y2 + ··· in a neighborhood of the origin, in which case the origin is called a 2: −3 resonant center.

AB - Using tools of computer algebra we derive the conditions for the cubic Lotka–Volterra system ẋ = x(2 − a20x2 − a11xy − a02y2), ẏ = y(−3+b20x2 + b11xy + b02y2) to be linearizable and to admit a first integral of the form Φ(x, y) =x3y2 + ··· in a neighborhood of the origin, in which case the origin is called a 2: −3 resonant center.

KW - First integral

KW - Polynomial systems of differential equations

KW - Resonant center problem

UR - http://www.scopus.com/inward/record.url?scp=85016559832&partnerID=8YFLogxK

U2 - 10.1007/978-3-642-32973-9_11

DO - 10.1007/978-3-642-32973-9_11

M3 - Conference contribution

AN - SCOPUS:85016559832

SN - 9783642329722

T3 - Lecture Notes in Computer Science

SP - 129

EP - 142

BT - Computer Algebra in Scientific Computing. CASC 2012

A2 - Gerdt, Vladimir P.

A2 - Koepf, Wolfram

A2 - Mayr, Ernst W.

A2 - Vorozhtsov, Evgenii V.

PB - Springer

T2 - 14th International Workshop on Computer Algebra in Scientific Computing 2012

Y2 - 3 September 2012 through 6 September 2012

ER -