Usually, models describing flow and transport for sub-surface engineering processes at the Darcy-scale do not take into consideration the effects of pore-scale flow regimes and fluid connectivity on average flow functions. In this paper, we investigate the impact of wettability on pore-scale flow regimes. We show that fluid connectivity at the pore scale has a significant impact on average flow kinetics and therefore its contribution should not be ignored. Immiscible two-phase flow simulations were performed in a two-dimensional (2D) model of a Berea sandstone rock for wettability conditions ranging from moderately water-wet to strongly oil-wet. The simulation results show that wettability has a strong impact on invading fluid phase connectivity, which subsequently influences flow transport resistance. The effect of invading-phase connectivity and ganglion dynamics on two-phase displacement kinetics was also investigated. It was found that invading phase connectivity decreases away from the neutrally wet (intermediate wet) state. This study provides evidence that ganglion dynamics accelerate fluid flow transport kinetics during immiscible displacement processes. Lastly, the impact of wettability on fluid displacement efficiency and residual saturations was investigated. Maximum displacement efficiency occurred at the neutrally wet state.
Original languageEnglish
JournalWater Resources Research
Publication statusAccepted/In press - 25 Mar 2022


Dive into the research topics of 'The Impact of Wettability on Dynamic Fluid Connectivity and Flow Transport Kinetics in Porous Media'. Together they form a unique fingerprint.

Cite this