The effects of energy-level resonance on collision-induced electronic energy transfer: CD (A 2Δ ↔ B 2Σ -) coupling

Research output: Contribution to journalArticlepeer-review

Abstract

Pulsed, time- and wavelength-resolved laser-induced fluorescence spectroscopy has been used to measure rate constants for collision-induced electronic energy transfer (EET) between the A 2? and B 2S- states of the CD radical. EET rate constants in the exothermic direction from B 2S-, v = 0 to the unresolved A 2?, v = 0 and 1 levels span the range 0.1-2.4 × 10-11 cm3 s-1 at room temperature (ca. 295 K) for the partners He, Ar, N2, CO and CO2. H 2 was also investigated, but was unsuitable for further study because of its rapid isotope exchange with CD(X 2?). As expected, only CO results in a significant rate of removal on any distinct, unobserved channel, presumed to be chemical reaction. The efficient A 2?, v = 1 ? 0 vibrational relaxation by CO2 observed previously for CH was not found for CD. Despite the significant differences in their detailed rovibronic level structures, the overall efficiency of EET in CD was found to be very similar to that for CH. The positive correlation in a Parmenter-Seaver plot appears to confirm a role for long-range attractive forces in the EET process. However, the detailed deviations from this overall trend found reproducibly for CD and CH suggests that partner-specific interactions are also important. © the Owner Societies.

Original languageEnglish
Pages (from-to)1568-1578
Number of pages11
JournalPhysical Chemistry Chemical Physics
Volume9
Issue number13
DOIs
Publication statusPublished - 2007

Fingerprint

Dive into the research topics of 'The effects of energy-level resonance on collision-induced electronic energy transfer: CD (A 2Δ ↔ B 2Σ -) coupling'. Together they form a unique fingerprint.

Cite this