TY - JOUR
T1 - The dynamics of O(3P) + deuterated hydrocarbons
T2 - Influences on product rotation and fine-structure state partitioning
AU - Ausfelder, Florian
AU - Kelso, Hailey
AU - McKendrick, Kenneth G.
PY - 2002
Y1 - 2002
N2 - The dynamics of the reactions O(3P) + CH4/CD4 and O(3P) + cyclo-C6H12/C6D12 have been investigated experimentally. Translationally hot O(3P) atoms were generated by laser photolysis of NO2 at 266 nm. The rotational and fine-structure state distributions in the nascent product OH or OD radicals were determined by laser-induced fluorescence. The deuterium-labelled reactants have provided confirmation of the main features of the product-state partitioning observed previously for normal-hydrogen compounds. Only OH v' = 0 is detectable from CH4 . CD4 also produces predominantly OD v' = 0, with v' = 1 being just detectable with an estimated branching ratio of ~ 0.06. Both cyclo-C6H12 and C6D12 produce significant yields of v' = 0 and 1 products. Despite the opposite trend in exothermicities, the v' = 0 products are rotationally hotter from methane than from cyclohexane, indicative of a stereochemical effect. The absolute rotational energy release is in each case found to be essentially independent of hydrogen isotope. It is argued that this supports the accepted collinear abstraction mechanism for this class of reactions. The OH fine-structure state partitioning is not influenced by hydrogen isotope, nor by product vibrational level despite distinct differences in the associated rotational energy release. This appears consistent with a previously derived model involving selected non-adiabatic coupling of adiabatic electronic fine-structure surfaces.
AB - The dynamics of the reactions O(3P) + CH4/CD4 and O(3P) + cyclo-C6H12/C6D12 have been investigated experimentally. Translationally hot O(3P) atoms were generated by laser photolysis of NO2 at 266 nm. The rotational and fine-structure state distributions in the nascent product OH or OD radicals were determined by laser-induced fluorescence. The deuterium-labelled reactants have provided confirmation of the main features of the product-state partitioning observed previously for normal-hydrogen compounds. Only OH v' = 0 is detectable from CH4 . CD4 also produces predominantly OD v' = 0, with v' = 1 being just detectable with an estimated branching ratio of ~ 0.06. Both cyclo-C6H12 and C6D12 produce significant yields of v' = 0 and 1 products. Despite the opposite trend in exothermicities, the v' = 0 products are rotationally hotter from methane than from cyclohexane, indicative of a stereochemical effect. The absolute rotational energy release is in each case found to be essentially independent of hydrogen isotope. It is argued that this supports the accepted collinear abstraction mechanism for this class of reactions. The OH fine-structure state partitioning is not influenced by hydrogen isotope, nor by product vibrational level despite distinct differences in the associated rotational energy release. This appears consistent with a previously derived model involving selected non-adiabatic coupling of adiabatic electronic fine-structure surfaces.
UR - http://www.scopus.com/inward/record.url?scp=0036158333&partnerID=8YFLogxK
U2 - 10.1039/b108699p
DO - 10.1039/b108699p
M3 - Article
SN - 1463-9084
VL - 4
SP - 473
EP - 481
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 3
ER -