The architectural design of smart ventilation and drainage systems in termite nests

Kamaljit Singh, Bagus P. Muljadi, Ali Q. Raeini, Christian Jost, Veerle Vandeginste, Martin J. Blunt, Guy Theraulaz, Pierre Degond

Research output: Contribution to journalArticle

3 Citations (Scopus)
20 Downloads (Pure)

Abstract

Termite nests have been widely studied as effective examples for ventilation and thermoregulation. However, the mechanisms by which these properties are controlled by the microstructure of the outer walls remain un- clear. Here, we combine multiscale X-ray imaging with three-dimensional flow field simulations to investigate the impact of the architectural design of nest walls on CO2 exchange, heat transport and water drainage. We show that termites build outer walls that contain both small and percolating large pores at the microscale. The network of larger microscale pores enhances permeability by one to two orders of magnitude compared to the smaller pores alone, and it increases CO2 diffusivity up to eight times. In addition, the pore network offers enhanced thermal insulation and allows quick drainage of rainwater, thereby restoring the ventilation and providing structural stability to the wet nest.
Original languageEnglish
Article numbereaat8520
JournalScience Advances
Volume5
Issue number3
DOIs
Publication statusPublished - 22 Mar 2019

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'The architectural design of smart ventilation and drainage systems in termite nests'. Together they form a unique fingerprint.

  • Cite this

    Singh, K., Muljadi, B. P., Raeini, A. Q., Jost, C., Vandeginste, V., Blunt, M. J., Theraulaz, G., & Degond, P. (2019). The architectural design of smart ventilation and drainage systems in termite nests. Science Advances, 5(3), [eaat8520]. https://doi.org/10.1126/sciadv.aat8520