Targeting For Total Water Network Based on Pinch Analysis

Denny Kok Sum Ng, Dominic Chwan Yee Foo, Raymond R. Tan, Yin Ling Tan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The current drive towards environmental sustainability and the rising costs of fresh water and effluent treatment have encouraged the process industry to find new ways to reduce fresh water consumption and wastewater generation. Process plants are now taking more serious measurement towards the minimisation of fresh water consumption via in-plant water reuse/recycle. This corresponds to reduced effluent generation as a mean to reduce production cost and to ensure sustainable growth in the business activities. The advent of process integration tools for the synthesis of optimal water network has seen extensive progress over the last decade, especially in the area of water reuse/recycle (Wang and Smith, 1994; Dhole et al, 1996; Polley and Polley, 2000; Hallale, 2002; El-Halwagi et al, 2003; Manan et al, 2004; Prakash and Shenoy, 2005, Foo et al., 2006). To date, flowrate targeting for water reuse/recycle based on pinch analysis techniques has been rather established. In this work, a novel and non-interactive numerical technique for flowrate targeting in a total water network is presented. A total water network consists of water reuse/recycle, regeneration as well as wastewater treatment networks (Bagajewicz, 2000; Gunaratnam et al., 2005). Apart from fresh water and wastewater flowrate targets, this newly proposed method allows the simultaneous targeting of regeneration and wastewater flowrates for final treatment. A revised cascade analysis technique known as Regeneration Water Cascade Analysis (RWCA) based on the work of Manan et al. (2004) is used to locate the various total water network targets. Two literature examples involving fixed-load and fixed flowrate problems are solved to illustrate the applicability of the newly developed technique.

Original languageEnglish
Title of host publication2006 AIChE Annual Meeting
PublisherAIChE
ISBN (Print)081691012X, 9780816910120
Publication statusPublished - 1 Dec 2006
Event2006 AIChE Annual Meeting - San Francisco, CA, United Kingdom
Duration: 12 Nov 200617 Nov 2006

Conference

Conference2006 AIChE Annual Meeting
CountryUnited Kingdom
CitySan Francisco, CA
Period12/11/0617/11/06

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Chemistry(all)

Fingerprint Dive into the research topics of 'Targeting For Total Water Network Based on Pinch Analysis'. Together they form a unique fingerprint.

Cite this