TY - JOUR
T1 - Tailoring hierarchical BiVO4 sub-micron particles for enhanced cyclability in asymmetric supercapacitor
AU - Subbiah, Mahalakshmi
AU - Ansalin Gnana Sowndarya, A.
AU - Sundaramurthy, Anandhakumar
AU - Venkatachalam, Sabarinathan
AU - Saravanan, Nishakavya
AU - Pitchaimuthu, Sudhagar
AU - Srinivasan, Nagarajan
N1 - Funding Information:
The author's SN and SV acknowledge RUSA – MHRD, Government of India (Scheme – Sustainable Energy Technologies – 2016) for providing financial assistance to demonstrate this work. Additionally, the Tamilnadu State Government Higher Education (H2) Department is acknowledged for the establishment of the Central Instrument Facility (GO (Ms) No. I59) and DST-FIST Project (SR/FST/CSI – 247/2012) for infrastructure support.
Funding Information:
The author's SN and SV acknowledge RUSA – MHRD, Government of India (Scheme – Sustainable Energy Technologies – 2016) for providing financial assistance to demonstrate this work. Additionally, the Tamilnadu State Government Higher Education (H2) Department is acknowledged for the establishment of the Central Instrument Facility (GO (Ms) No. I59) and DST-FIST Project (SR/FST/CSI – 247/2012) for infrastructure support.
Publisher Copyright:
© 2023 The Author(s)
PY - 2023/11/1
Y1 - 2023/11/1
N2 - This work demonstrates the feasibility of sub-micron size metal oxides as a sustainable charge storage material in supercapacitors fabrication and addressing the cycle instability issues of pseudocapacitors. The sub-micron bismuth vanadate (BiVO4) particles were synthesized by two different routes, co-precipitation (BVO-N) and sonochemical (BVO-S) methods. The morphological investigation of BVO-S showed hierarchical microspheres with diameter ranges of 1–6 μm, which is more prominent in size compared to BVO-N particles (100 nm- 1-μm in diameter). The nitric acid plays a crucial role in stabilizing the BiVO4 particles in the co-precipitation process, whereas ultrasonic waves predominantly control the spherical particle formation in the sonochemical route. The electrochemical performance of BVO-N and BVO-S was tested in a potassium hydroxide (KOH) electrolyte. The charge and discharge cycle experiments showed BVO-S microspheres are more highly stable than that BVO-N. The BVO-N starts to degrade with its initial capacitance beyond 1000 cycles. The poor stability of BVO-N may be due to the breakdown of surface-adsorbed charged ionic species. As a result, BVO-S performs with a higher specific capacitance value of 214 F/g compared to BVO-N (124 F/g). Trasatti analysis revealed a balanced, synergistic behaviour of pseudocapacitance (61 %) and electric double layer capacitance (39 %) at the BVO-S is responsible for their high specific capacitance compared to BVO-N. The BVO-S has low intrinsic resistance due to the highly denser micro-spherical structure, allowing electrolyte ions to access the inner and outer surfaces of the BVO-S. Interestingly, charge transfer resistance was decreased after the cyclic stability test due to electrochemical activation and facilitates fast ion transport increasing the surface contact area of active material at the electrode-electrolyte interface. We fabricate the asymmetric cell with BVO-S microspheres (anode), activated carbon particles (cathode) and Poly (ethylene oxide) (PEO) /Polyethene glycol dimethyl ether (PEGDME)/KOH gel-based electrolyte. This asymmetric supercapacitor performs with a specific capacitance value of 153 F/g at 0.3 A/g under the cell voltage of 1.2 V. Also, it delivers 30.6 Whkg−1 of energy density and 1983 W kg−1 of power density. The cyclic stability of 98 % over 5000 cycles was achieved in this configuration. This performance is appreciable compared to the previous work on BiVO4-based asymmetry supercapacitors, particularly a capacitance retention (%) and potential window. Overall, an acid-free sonochemical processing route reported in this work is highly environmentally friendly. Likewise, the sub-micron metal oxide particle significantly improves their electrochemical stability without the coalesced together with any carbonaceous material. It can be transferred to synthesizing a broader choice of metal oxide based for enhanced cyclability with effective utilization of their charge storage behaviour that will perform high-power storage, which powers short-distance electric transportation.
AB - This work demonstrates the feasibility of sub-micron size metal oxides as a sustainable charge storage material in supercapacitors fabrication and addressing the cycle instability issues of pseudocapacitors. The sub-micron bismuth vanadate (BiVO4) particles were synthesized by two different routes, co-precipitation (BVO-N) and sonochemical (BVO-S) methods. The morphological investigation of BVO-S showed hierarchical microspheres with diameter ranges of 1–6 μm, which is more prominent in size compared to BVO-N particles (100 nm- 1-μm in diameter). The nitric acid plays a crucial role in stabilizing the BiVO4 particles in the co-precipitation process, whereas ultrasonic waves predominantly control the spherical particle formation in the sonochemical route. The electrochemical performance of BVO-N and BVO-S was tested in a potassium hydroxide (KOH) electrolyte. The charge and discharge cycle experiments showed BVO-S microspheres are more highly stable than that BVO-N. The BVO-N starts to degrade with its initial capacitance beyond 1000 cycles. The poor stability of BVO-N may be due to the breakdown of surface-adsorbed charged ionic species. As a result, BVO-S performs with a higher specific capacitance value of 214 F/g compared to BVO-N (124 F/g). Trasatti analysis revealed a balanced, synergistic behaviour of pseudocapacitance (61 %) and electric double layer capacitance (39 %) at the BVO-S is responsible for their high specific capacitance compared to BVO-N. The BVO-S has low intrinsic resistance due to the highly denser micro-spherical structure, allowing electrolyte ions to access the inner and outer surfaces of the BVO-S. Interestingly, charge transfer resistance was decreased after the cyclic stability test due to electrochemical activation and facilitates fast ion transport increasing the surface contact area of active material at the electrode-electrolyte interface. We fabricate the asymmetric cell with BVO-S microspheres (anode), activated carbon particles (cathode) and Poly (ethylene oxide) (PEO) /Polyethene glycol dimethyl ether (PEGDME)/KOH gel-based electrolyte. This asymmetric supercapacitor performs with a specific capacitance value of 153 F/g at 0.3 A/g under the cell voltage of 1.2 V. Also, it delivers 30.6 Whkg−1 of energy density and 1983 W kg−1 of power density. The cyclic stability of 98 % over 5000 cycles was achieved in this configuration. This performance is appreciable compared to the previous work on BiVO4-based asymmetry supercapacitors, particularly a capacitance retention (%) and potential window. Overall, an acid-free sonochemical processing route reported in this work is highly environmentally friendly. Likewise, the sub-micron metal oxide particle significantly improves their electrochemical stability without the coalesced together with any carbonaceous material. It can be transferred to synthesizing a broader choice of metal oxide based for enhanced cyclability with effective utilization of their charge storage behaviour that will perform high-power storage, which powers short-distance electric transportation.
KW - Asymmetric supercapacitor
KW - BiVO
KW - Charge transfer
KW - Energy density
KW - Energy materials
KW - Energy storage
KW - Hierarchical microspheres
KW - Power density
UR - http://www.scopus.com/inward/record.url?scp=85163214798&partnerID=8YFLogxK
U2 - 10.1016/j.est.2023.108137
DO - 10.1016/j.est.2023.108137
M3 - Article
AN - SCOPUS:85163214798
SN - 2352-152X
VL - 71
JO - Journal of Energy Storage
JF - Journal of Energy Storage
M1 - 108137
ER -