TY - JOUR
T1 - Symmetry Breaking Hopf Bifurcations in Equations with O(2) Symmetry with Application to the Kuramoto-Sivashinsky Equation
AU - Amdjadi, F.
AU - Aston, P. J.
AU - Plecháč, Petr
PY - 1997/2
Y1 - 1997/2
N2 - In problems withO(2) symmetry, the Jacobian matrix at nontrivial steady state solutions withDnsymmetry always has a zero eigenvalue due to the group orbit of solutions. We consider bifurcations which occur when complex eigenvalues also cross the imaginary axis and develop a numerical method which involves the addition of a new variable, namely the velocity of solutions drifting round the group orbit, and another equation, which has the form of a phase condition for isolating one solution on the group orbit. The bifurcating branch has a particular type of spatio-temporal symmetry which can be broken in a further bifurcation which gives rise to modulated travelling wave solutions which drift around the group orbit. Multiple Hopf bifurcations are also considered. The methods derived are applied to the Kuramoto-Sivashinsky equation and we give results at two different bifurcations, one of which is a multiple Hopf bifurcation. Our results give insight into the numerical results of Hyman, Nicolaenko, and Zaleski (Physica D23,265, 1986). © 1997 Academic Press.
AB - In problems withO(2) symmetry, the Jacobian matrix at nontrivial steady state solutions withDnsymmetry always has a zero eigenvalue due to the group orbit of solutions. We consider bifurcations which occur when complex eigenvalues also cross the imaginary axis and develop a numerical method which involves the addition of a new variable, namely the velocity of solutions drifting round the group orbit, and another equation, which has the form of a phase condition for isolating one solution on the group orbit. The bifurcating branch has a particular type of spatio-temporal symmetry which can be broken in a further bifurcation which gives rise to modulated travelling wave solutions which drift around the group orbit. Multiple Hopf bifurcations are also considered. The methods derived are applied to the Kuramoto-Sivashinsky equation and we give results at two different bifurcations, one of which is a multiple Hopf bifurcation. Our results give insight into the numerical results of Hyman, Nicolaenko, and Zaleski (Physica D23,265, 1986). © 1997 Academic Press.
U2 - 10.1006/jcph.1996.5599
DO - 10.1006/jcph.1996.5599
M3 - Article
SN - 1090-2716
VL - 131
SP - 181
EP - 192
JO - Journal of Computational Physics
JF - Journal of Computational Physics
IS - 1
ER -