Abstract
Stable, single-nanometer thin, and free-standing two-dimensional layers with controlled molecular architectures are desired for several applications ranging from (opto-)electronic devices to nanoparticle and single-biomolecule characterization. It is, however, challenging to construct these stable single molecular layers via self-assembly, as the cohesion of those systems is ensured only by in-plane bonds. We herein demonstrate that relatively weak noncovalent bonds of limited directionality such as dipole-dipole (–CNNC–) interactions act in a synergistic fashion to stabilize crystalline monomolecular layers of tetrafunctional calixarenes. The monolayers produced, demonstrated to be freestanding, display a well-defined atomic structure on the single-nanometer scale and are robust under a wide range of conditions including photon and electron radiation. This work opens up new avenues for the fabrication of robust, single-component, and free-standing layers via bottom-up self-assembly.
Original language | English |
---|---|
Article number | eaav4489 |
Journal | Science Advances |
Volume | 5 |
Issue number | 2 |
DOIs | |
Publication status | Published - 22 Feb 2019 |
Fingerprint
Dive into the research topics of 'Supramolecular architectures of molecularly thin yet robust free-standing layers'. Together they form a unique fingerprint.Profiles
-
Scott J. Dalgarno
- School of Engineering & Physical Sciences - Professor
- School of Engineering & Physical Sciences, Institute of Chemical Sciences - Professor
Person: Academic (Research & Teaching)