Abstract
We theoretically investigate the electromechanical properties of freely suspended nanowires that are in tunneling contact with the tip of a scanning tunneling microscope (STM) and two supporting metallic leads. The aim of our analysis is to characterize the fluctuations of the dynamical variables of the nanowire when a temperature drop is maintained between the STM tip and the leads, which are all assumed to be electrically grounded. By solving a quantum master equation that describes the coupled dynamics of electronic and mechanical degrees of freedom, we found that the stationary state of the mechanical oscillator has a Gaussian character, but that the amplitude of its root-mean square center-of-mass fluctuations is smaller than would be expected if the system were coupled only to the leads at thermal equilibrium.
| Original language | English |
|---|---|
| Article number | 103017 |
| Number of pages | 12 |
| Journal | New Journal of Physics |
| Volume | 13 |
| DOIs | |
| Publication status | Published - 14 Oct 2011 |