TY - JOUR
T1 - Successes and challenges in using machine-learned activation energies in kinetic simulations
AU - Ismail, I.
AU - Robertson, C.
AU - Habershon, S.
N1 - Funding Information:
The authors acknowledge support from the Engineering and Physical Sciences Research Council, UK, through Grant Nos. EP/S022848/1 and EP/R020477/1. The authors also acknowledge the Scientific Computing Research Technology Platform at the University of Warwick, UK, for provision of high-performance computing facilities.
Publisher Copyright:
© 2022 Author(s).
PY - 2022/7/7
Y1 - 2022/7/7
N2 - The prediction of the thermodynamic and kinetic properties of chemical reactions is increasingly being addressed by machine-learning (ML) methods, such as artificial neural networks (ANNs). While a number of recent studies have reported success in predicting chemical reaction activation energies, less attention has been focused on how the accuracy of ML predictions filters through to predictions of macroscopic observables. Here, we consider the impact of the uncertainty associated with ML prediction of activation energies on observable properties of chemical reaction networks, as given by microkinetics simulations based on ML-predicted reaction rates. After training an ANN to predict activation energies, given standard molecular descriptors for reactants and products alone, we performed microkinetics simulations of three different prototypical reaction networks: formamide decomposition, aldol reactions, and decomposition of 3-hydroperoxypropanal. We find that the kinetic modeling predictions can be in excellent agreement with corresponding simulations performed with ab initio calculations, but this is dependent on the inherent energetic landscape of the networks. We use these simulations to suggest some guidelines for when ML-based activation energies can be reliable and when one should take more care in applications to kinetics modeling.
AB - The prediction of the thermodynamic and kinetic properties of chemical reactions is increasingly being addressed by machine-learning (ML) methods, such as artificial neural networks (ANNs). While a number of recent studies have reported success in predicting chemical reaction activation energies, less attention has been focused on how the accuracy of ML predictions filters through to predictions of macroscopic observables. Here, we consider the impact of the uncertainty associated with ML prediction of activation energies on observable properties of chemical reaction networks, as given by microkinetics simulations based on ML-predicted reaction rates. After training an ANN to predict activation energies, given standard molecular descriptors for reactants and products alone, we performed microkinetics simulations of three different prototypical reaction networks: formamide decomposition, aldol reactions, and decomposition of 3-hydroperoxypropanal. We find that the kinetic modeling predictions can be in excellent agreement with corresponding simulations performed with ab initio calculations, but this is dependent on the inherent energetic landscape of the networks. We use these simulations to suggest some guidelines for when ML-based activation energies can be reliable and when one should take more care in applications to kinetics modeling.
UR - http://www.scopus.com/inward/record.url?scp=85133977501&partnerID=8YFLogxK
U2 - 10.1063/5.0096027
DO - 10.1063/5.0096027
M3 - Article
C2 - 35803803
AN - SCOPUS:85133977501
SN - 0021-9606
VL - 157
JO - The Journal of Chemical Physics
JF - The Journal of Chemical Physics
IS - 1
M1 - 014109
ER -