Abstract
Evidence is presented in this paper that certain single-wall carbon nanotubes are not seamless tubes, but rather adopt a graphene helix resulting from the spiral growth of a nano-graphene ribbon. The residual traces of the helices are confirmed by high-resolution transmission electron microscopy and atomic force microscopy. The analysis also shows that the tubular graphene material may exhibit a unique armchair structure and the chirality is not a necessary condition for the growth of carbon nanotubes. The description of the structure of the helical carbon nanomaterials is generalized using the plane indices of hexagonal space groups instead of using chiral vectors. It is also proposed that the growth model, via a graphene helix, results in a ubiquitous structure of single-wall carbon nanotubes. In this work, single-wall carbon nanotubes (SWNTs) are shown to result from the spiral growth, as the minimum energy configuration, of zigzag graphene ribbons. The resulting graphene helices are not seamless tubes. The evidence and analysis addresses mounting inconsistencies in the measured mechanical and electrical properties of SWNTs. The growth and material properties, including chirality, need to be re-interpreted in terms of non-idealized structures of SWNTs.
Original language | English |
---|---|
Pages (from-to) | 3283-3290 |
Number of pages | 8 |
Journal | Small |
Volume | 10 |
Issue number | 16 |
DOIs | |
Publication status | Published - 27 Aug 2014 |
Keywords
- carbon nanotubes
- growth mechanism
- high-resolution transmission electron microscopy
- structure
ASJC Scopus subject areas
- Biomaterials
- Engineering (miscellaneous)
- Biotechnology