TY - JOUR
T1 - Structural alterations of erythrocyte membrane components induced by exhaustive exercise
AU - Brzeszczywska, Joanna
AU - Pieniazek, Anna
AU - Gwozdzinski, Lukasz
AU - Gwozdzinski, Krzysztof
AU - Jegier, Anna
PY - 2008/12
Y1 - 2008/12
N2 - Physical exercise was used as a model of the physiological modulator of free radical production to examine the effects of exercise-induced oxidative modifications on the physico-biochemical properties of erythrocyte membrane. The aim of our work was to investigate conformational changes of erythrocyte membrane proteins, membrane fluidity, and membrane susceptibility to disintegration. Venous blood was taken before, immediately after, and 1 h after an exhaustive incremental cycling test (30 W·min-1 ramp), performed by 11 healthy untrained males on balanced diets (mean age, 22 ± 2 years; mean body mass index, 25 ± 4.5 kg·m-2). In response to this exercise, individual maximum heart rate was 195 ± 12 beats·min-1 and maximum wattage was 292 ± 27 W. Electron paramagnetic resonance spectroscopy was used to investigate alterations in membrane proteins and membrane dynamics, and to measure production of radical species. The reducing potential of plasma (RPP) was measured using the reduction of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the ferric-reducing ability of plasma. Exercise induced decreases in erythrocyte membrane fluidity in the polar region (p < 0.0001) and alterations in the conformational state of membrane proteins (p < 0.05). An increase in RPP was observed immediately after exercise (p < 0.001), with a further increase 1 h postexercise (p < 0.0001). Supporting measurements of lipid peroxidation showed an increase in thiobarbituric acid reactive substances immediately after exercise (p < 0.05) and at 1 h of recovery (p < 0.001); however, free radicals were not detected. Results indicate the existence of early postexercise mild oxidative stress after single-exercise performance, which induced structural changes in erythrocyte membrane components (protein aggregation) and in the membrane organization (lipids rigidization) that followed lipid peroxidation but did not lead to cellular hemolysis. © 2008 NRC.
AB - Physical exercise was used as a model of the physiological modulator of free radical production to examine the effects of exercise-induced oxidative modifications on the physico-biochemical properties of erythrocyte membrane. The aim of our work was to investigate conformational changes of erythrocyte membrane proteins, membrane fluidity, and membrane susceptibility to disintegration. Venous blood was taken before, immediately after, and 1 h after an exhaustive incremental cycling test (30 W·min-1 ramp), performed by 11 healthy untrained males on balanced diets (mean age, 22 ± 2 years; mean body mass index, 25 ± 4.5 kg·m-2). In response to this exercise, individual maximum heart rate was 195 ± 12 beats·min-1 and maximum wattage was 292 ± 27 W. Electron paramagnetic resonance spectroscopy was used to investigate alterations in membrane proteins and membrane dynamics, and to measure production of radical species. The reducing potential of plasma (RPP) was measured using the reduction of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the ferric-reducing ability of plasma. Exercise induced decreases in erythrocyte membrane fluidity in the polar region (p < 0.0001) and alterations in the conformational state of membrane proteins (p < 0.05). An increase in RPP was observed immediately after exercise (p < 0.001), with a further increase 1 h postexercise (p < 0.0001). Supporting measurements of lipid peroxidation showed an increase in thiobarbituric acid reactive substances immediately after exercise (p < 0.05) and at 1 h of recovery (p < 0.001); however, free radicals were not detected. Results indicate the existence of early postexercise mild oxidative stress after single-exercise performance, which induced structural changes in erythrocyte membrane components (protein aggregation) and in the membrane organization (lipids rigidization) that followed lipid peroxidation but did not lead to cellular hemolysis. © 2008 NRC.
KW - Cytoskeleton
KW - EPR
KW - Erythrocyte
KW - Exercise
KW - Free radicals
KW - Oxidative stress
KW - Spin labels
UR - http://www.scopus.com/inward/record.url?scp=57649237927&partnerID=8YFLogxK
U2 - 10.1139/H08-125
DO - 10.1139/H08-125
M3 - Article
C2 - 19088781
SN - 1715-5312
VL - 33
SP - 1223
EP - 1231
JO - Applied Physiology, Nutrition and Metabolism
JF - Applied Physiology, Nutrition and Metabolism
IS - 6
ER -