‘Stealth’ nanoparticles evade neural immune cells but also evade all major brain cell populations: Implications for PEG-based neurotherapeutics

Stuart I. Jenkins, Daniel Weinberg, Arwa F. Al-Shakli, Alinda R. Fernandes, Humphrey H.P. Yiu, Neil D. Telling, Paul Roach, Divya M. Chari

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)
151 Downloads (Pure)


Surface engineering to control cell behavior is of high interest across the chemical engineering, drug delivery and biomaterial communities. Defined chemical strategies are necessary to tailor nanoscale protein interactions/adsorption, enabling control of cell behaviors for development of novel therapeutic strategies. Nanoparticle-based therapies benefit from such strategies but particle targeting to sites of neurological injury remains challenging due to circulatory immune clearance. As a strategy to overcome this barrier, the use of stealth coatings can reduce immune clearance and prolong circulatory times, thereby enhancing therapeutic capacity. Polyethylene glycol (PEG) is the most widely-used stealth coating and facilitates particle accumulation in the brain. However, once within the brain, the mode of handling of PEGylated particles by the resident immune cells of the brain itself (the ‘microglia’) is unknown. This is a critical question as it is well established that microglia avidly sequester nanoparticles, limiting their bioavailability and posing a major translational barrier. If PEGylation can be proved to promote evasion of microglia, then this information will be of high value in developing tailored nanoparticle-based therapies for neurological applications. Here, we have conducted the first comparative study of uptake of PEGylated particles by all the major (immune and non-immune) brain cell types. We prove for the first time that PEGylated nanoparticles evade major brain cell populations — a phenomenon which will enhance extracellular bioavailability. We demonstrate changes in protein coronas around these particles within biological media, and discuss how surface chemistry presentation may affect this process and subsequent cellular interactions.
Original languageEnglish
Pages (from-to)136-145
Number of pages10
JournalJournal of Controlled Release
Early online date11 Jan 2016
Publication statusPublished - 28 Feb 2016


Dive into the research topics of '‘Stealth’ nanoparticles evade neural immune cells but also evade all major brain cell populations: Implications for PEG-based neurotherapeutics'. Together they form a unique fingerprint.

Cite this