Stationary solutions to the compressible Navier–Stokes system driven by stochastic forces

Dominic Breit, Eduard Feireisl, Martina Hofmanová, Bohdan Maslowski

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
52 Downloads (Pure)


We study the long-time behavior of solutions to a stochastically driven Navier–Stokes system describing the motion of a compressible viscous fluid driven by a temporal multiplicative white noise perturbation. The existence of stationary solutions is established in the framework of Lebesgue–Sobolev spaces pertinent to the class of weak martingale solutions. The methods are based on new global-in-time estimates and a combination of deterministic and stochastic compactness arguments. An essential tool in order to obtain the global-in-time estimate is the stationarity of solutions on each approximation level, which provides a certain regularizing effect. In contrast with the deterministic case, where related results were obtained only under rather restrictive constitutive assumptions for the pressure, the stochastic case is tractable in the full range of constitutive relations allowed by the available existence theory, due to the underlying martingale structure of the noise.
Original languageEnglish
Pages (from-to)981–1032
Number of pages52
JournalProbability Theory and Related Fields
Issue number3-4
Early online date3 Oct 2018
Publication statusPublished - Aug 2019


Dive into the research topics of 'Stationary solutions to the compressible Navier–Stokes system driven by stochastic forces'. Together they form a unique fingerprint.

Cite this