Stability of submarine slopes with monopile foundations under storm conditions

Research output: Contribution to journalArticlepeer-review

58 Downloads (Pure)

Abstract

Monopiles are a key foundation type for securing offshore wind turbines to the seabed. They face multiple dynamic loading conditions, especially for extreme storms. Despite much research on foundation stability, there is a lack of understanding of the interaction between monopiles and complex submarine terrains, especially regarding submarine slope stability. A coupled wave-structure-soil numerical modeling framework is used to investigate the effects of the monopile on the submarine slope stability before, during and after storms for the first time, using field data of wind and wave conditions, seabed slope, soil properties, OWT and monopile at a wind farm in the North Sea. It was found that introducing a monopile into a sloped seabed environment induces significant stress concentrations, affecting the surrounding geological strata. In addition, the installation of a monopile significantly alters the local stress-strain conditions. As storms approach, the observed peak plastic strain and displacement highlight the need to incorporate cut-off speed effects into the OWT design considerations. While soil liquefaction was not detected for the model set up of the present study, it remains a potential risk in soils with low cohesion where a thorough evaluation is required. Furthermore, increasing the diameter and depth of monopile installations was found to enhance slope stability. The present study provides new insights that submarine slope instability should be a critical consideration of OWT developers.
Original languageEnglish
Article number120464
JournalOcean Engineering
Volume323
Early online date17 Feb 2025
DOIs
Publication statusPublished - 15 Apr 2025

Keywords

  • Offshore wind energy
  • Storm
  • Monopile foundations
  • Submarine slope stability

Fingerprint

Dive into the research topics of 'Stability of submarine slopes with monopile foundations under storm conditions'. Together they form a unique fingerprint.

Cite this