Abstract
This research aims to design a modified P&O algorithm for the efficient tracking of maximum power point (MPPT) for standalone and grid-connected systems. The proposed research work modifies the P&O algorithm for the dc-dc converter where the fixed step size P&O algorithm is translated into variable step size with the help of ant colony optimization (ACO) to generate optimal parameters for the PID controller to generate a variable step size in the P&O algorithm. This variable step size is dependent upon the error that is the difference between the generated power and desired power. By doing this it improves the efficiency of the P&O algorithm and its limitations are overcome. Furthermore, the PV is extended to connect with a grid where the inverter is controlled by a fuzzy logic controller (FLC) so that the combined structure of variable P&O and fuzzy helps to achieve MPP efficiently. The robustness of the proposed work is compared with other state-of-the-art controllers to justify the effectiveness of the proposed work. Finally, a stability test of the system is carried out to verify the overall stability of the power system.
Original language | English |
---|---|
Article number | 8986 |
Journal | Sustainability |
Volume | 14 |
Issue number | 15 |
DOIs | |
Publication status | Published - 22 Jul 2022 |
Keywords
- fuzzy logic controller
- maximum power point tracking
- perturbation and observation
- variable step size
ASJC Scopus subject areas
- Computer Science (miscellaneous)
- Geography, Planning and Development
- Renewable Energy, Sustainability and the Environment
- Building and Construction
- Environmental Science (miscellaneous)
- Energy Engineering and Power Technology
- Hardware and Architecture
- Computer Networks and Communications
- Management, Monitoring, Policy and Law