Abstract
Solar powered unmanned aerial vehicles (SPUAV) have numerous applications and are considered as environmentally friendly vehicles since they only use suns energy for propulsion. In this study, a conceptional design was proposed which integrates a cooling duct inside the airfoil to provide cooling for the backside of solar cells at Reynolds number of 206,000 at an altitude of 1 km. Duct dimensions were first optimised using a MATLAB program. Computational fluid dynamics (CFD) was used to investigate the lift and drag characteristics of the modified airfoil. Heat transfer analysis on the solar array using CFD was performed to obtain solar cell temperatures of the baseline and modified design. Results obtained from the cruising conditions showed that the maximum temperature drop was 3°C and the cooling duct increased the lift force by 9% per metre with an increase in drag of 13%.
Original language | English |
---|---|
Pages (from-to) | 61-82 |
Number of pages | 22 |
Journal | International Journal of Aerodynamics |
Volume | 7 |
Issue number | 1 |
Early online date | 1 May 2020 |
DOIs | |
Publication status | Published - 2020 |