Solar powered unmanned aerial vehicle: a numerical approach in improving solar cell performance

Rowayne E. Murzello, Mehdi Nazarinia, Amanda J. Hughes

Research output: Contribution to journalArticlepeer-review

66 Downloads (Pure)

Abstract

Solar powered unmanned aerial vehicles (SPUAV) have numerous applications and are considered as environmentally friendly vehicles since they only use suns energy for propulsion. In this study, a conceptional design was proposed which integrates a cooling duct inside the airfoil to provide cooling for the backside of solar cells at Reynolds number of 206,000 at an altitude of 1 km. Duct dimensions were first optimised using a MATLAB program. Computational fluid dynamics (CFD) was used to investigate the lift and drag characteristics of the modified airfoil. Heat transfer analysis on the solar array using CFD was performed to obtain solar cell temperatures of the baseline and modified design. Results obtained from the cruising conditions showed that the maximum temperature drop was 3°C and the cooling duct increased the lift force by 9% per metre with an increase in drag of 13%.
Original languageEnglish
Pages (from-to)61-82
Number of pages22
JournalInternational Journal of Aerodynamics
Volume7
Issue number1
Early online date1 May 2020
DOIs
Publication statusPublished - 2020

Fingerprint

Dive into the research topics of 'Solar powered unmanned aerial vehicle: a numerical approach in improving solar cell performance'. Together they form a unique fingerprint.

Cite this