Sliding wear investigation of suspension sprayed WC-Co nanocomposite coatings

R. Ahmed*, Omar Ali, N. H. Faisal, N. M. Al-Anazi, S. Al-Mutairi, F. L. Toma, L. M. Berger, A. Potthoff, M. F A Goosen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

67 Citations (Scopus)


Sliding wear evaluation of nanostructured coatings deposited by Suspension High Velocity Oxy-Fuel (S-HVOF) and conventional HVOF (Jet Kote (HVOF-JK) and JP5000 (HVOF-JP)) spraying were evaluated. S-HVOF coatings were nanostructured and deposited via an aqueous based suspension of the WC-Co powder, using modified HVOF (TopGun) spraying. Microstructural evaluations of these hardmetal coatings included X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDX). Sliding wear tests on coatings were conducted using a ball-on-flat test rig against steel, silicon nitride (Si3N4) ceramic and WC-6Co balls. Results indicated that nanosized particles inherited from the starting powder in S-HVOF spraying were retained in the resulting coatings. Significant changes in the chemical and phase composition were observed in the S-HVOF coatings. Despite decarburization, the hardness and sliding wear resistance of the S-HVOF coatings was comparable to the HVOF-JK and HVOF-JP coatings. The sliding wear performance was dependent on the ball-coating test couple. In general a higher ball wear rate was observed with lower coating wear rate. Comparison of the total (ball and coating) wear rate indicated that for steel and ceramic balls, HVOF-JP coatings performed the best followed by the S-HVOF and HVOF-JK coatings. For the WC-Co ball tests, average performance of S-HVOF was better than that of HVOF-JK and HVOF-JP coatings. Changes in sliding wear behavior were attributed to the support of metal matrix due to relatively higher tungsten content, and uniform distribution of nanoparticles in the S-HVOF coating microstructure. The presence of tribofilm was also observed for all test couples.

Original languageEnglish
Pages (from-to)133-150
Number of pages18
Early online date13 Nov 2014
Publication statusPublished - 5 Jan 2015


  • Nanostructured coating
  • Sliding wear
  • Suspension spraying
  • Tribology
  • WC-Co coating

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Mechanics of Materials


Dive into the research topics of 'Sliding wear investigation of suspension sprayed WC-Co nanocomposite coatings'. Together they form a unique fingerprint.

Cite this