TY - JOUR
T1 - Single-Crystal to Single-Crystal Addition of H2to [Ir(iPr-PONOP)(propene)][BArF4] and Comparison between Solid-State and Solution Reactivity
AU - Royle, Cameron G.
AU - Sotorríos, Lia
AU - Gyton, Matthew R.
AU - Brodie, Claire N.
AU - Burnage, Arron L.
AU - Furfari, Samantha K.
AU - Marini, Anna
AU - Warren, Mark R.
AU - Macgregor, Stuart A.
AU - Weller, Andrew S.
N1 - Funding Information:
The EPSRC (EP/M024210/2, EP/T019867/1), SCG Chemicals, The Clarendon Trust, The Leverhulme Trust (RPG-2020-184), Diamond Light Source for funding (PhD studentship to AM).
Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/11/28
Y1 - 2022/11/28
N2 - The reactivity of the Ir(I) PONOP pincer complex [Ir(iPr-PONOP)(η2-propene)][BArF4], 6, [iPr-PONOP = 2,6-(iPr2PO)2C6H3N, ArF= 3,5-(CF3)2C6H3] was studied in solution and the solid state, both experimentally, using molecular density functional theory (DFT) and periodic-DFT computational methods, as well as in situ single-crystal to single-crystal (SC-SC) techniques. Complex 6 is synthesized in solution from sequential addition of H2and propene, and then the application of vacuum, to [Ir(iPr-PONOP)(η2-COD)][BArF4], 1, a reaction manifold that proceeds via the Ir(III) dihydrogen/dihydride complex [Ir(iPr-PONOP)(H2)H2][BArF4], 2, and the Ir(III) dihydride propene complex [Ir(iPr-PONOP)(η2-propene)H2][BArF4], 7, respectively. In solution (CD2Cl2) 6 undergoes rapid reaction with H2to form dihydride 7 and then a slow (3 d) onward reaction to give dihydrogen/dihydride 2 and propane. DFT calculations on the molecular cation in solution support this slow, but productive, reaction, with a calculated barrier to rate-limiting propene migratory insertion of 24.8 kcal/mol. In the solid state single-crystals of 6 also form complex 7 on addition of H2in an SC-SC reaction, but unlike in solution the onward reaction (i.e., insertion) does not occur, as confirmed by labeling studies using D2. The solid-state structure of 7 reveals that, on addition of H2to 6, the PONOP ligand moves by 90° within a cavity of [BArF4]-anions rather than the alkene moving. Periodic DFT calculations support the higher barrier to insertion in the solid state (ΔG‡= 26.0 kcal/mol), demonstrating that the single-crystal environment gates onward reactivity compared to solution. H2addition to 6 to form 7 is reversible in both solution and the solid state, but in the latter crystallinity is lost. A rare example of a sigma amine-borane pincer complex, [Ir(iPr-PONOP)H2(η1-H3B·NMe3)][BArF4], 5, is also reported as part of these studies.
AB - The reactivity of the Ir(I) PONOP pincer complex [Ir(iPr-PONOP)(η2-propene)][BArF4], 6, [iPr-PONOP = 2,6-(iPr2PO)2C6H3N, ArF= 3,5-(CF3)2C6H3] was studied in solution and the solid state, both experimentally, using molecular density functional theory (DFT) and periodic-DFT computational methods, as well as in situ single-crystal to single-crystal (SC-SC) techniques. Complex 6 is synthesized in solution from sequential addition of H2and propene, and then the application of vacuum, to [Ir(iPr-PONOP)(η2-COD)][BArF4], 1, a reaction manifold that proceeds via the Ir(III) dihydrogen/dihydride complex [Ir(iPr-PONOP)(H2)H2][BArF4], 2, and the Ir(III) dihydride propene complex [Ir(iPr-PONOP)(η2-propene)H2][BArF4], 7, respectively. In solution (CD2Cl2) 6 undergoes rapid reaction with H2to form dihydride 7 and then a slow (3 d) onward reaction to give dihydrogen/dihydride 2 and propane. DFT calculations on the molecular cation in solution support this slow, but productive, reaction, with a calculated barrier to rate-limiting propene migratory insertion of 24.8 kcal/mol. In the solid state single-crystals of 6 also form complex 7 on addition of H2in an SC-SC reaction, but unlike in solution the onward reaction (i.e., insertion) does not occur, as confirmed by labeling studies using D2. The solid-state structure of 7 reveals that, on addition of H2to 6, the PONOP ligand moves by 90° within a cavity of [BArF4]-anions rather than the alkene moving. Periodic DFT calculations support the higher barrier to insertion in the solid state (ΔG‡= 26.0 kcal/mol), demonstrating that the single-crystal environment gates onward reactivity compared to solution. H2addition to 6 to form 7 is reversible in both solution and the solid state, but in the latter crystallinity is lost. A rare example of a sigma amine-borane pincer complex, [Ir(iPr-PONOP)H2(η1-H3B·NMe3)][BArF4], 5, is also reported as part of these studies.
UR - http://www.scopus.com/inward/record.url?scp=85135891738&partnerID=8YFLogxK
U2 - 10.1021/acs.organomet.2c00274
DO - 10.1021/acs.organomet.2c00274
M3 - Article
C2 - 36466791
AN - SCOPUS:85135891738
SN - 0276-7333
VL - 41
SP - 3270
EP - 3280
JO - Organometallics
JF - Organometallics
IS - 22
ER -