TY - JOUR
T1 - Silver nanoparticle conjugation affects antiacanthamoebic activities of amphotericin B, nystatin, and fluconazole
AU - Anwar, Ayaz
AU - Siddiqui, Ruqaiyyah
AU - Hussain, Muhammad Asim
AU - Ahmed, Dania
AU - Shah, Muhammad Raza
AU - Khan, Naveed Ahmed
PY - 2018/1
Y1 - 2018/1
N2 - Infectious diseases are the leading cause of morbidity and mortality, killing more than 15 million people worldwide. This is despite our advances in antimicrobial chemotherapy and supportive care. Nanoparticles offer a promising technology to enhance drug efficacy and formation of effective vehicles for drug delivery. Here, we conjugated amphotericin B, nystatin (macrocyclic polyenes), and fluconazole (azole) with silver nanoparticles. Silver-conjugated drugs were synthesized successfully and characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, and atomic force microscopy. Conjugated and unconjugated drugs were tested against Acanthamoeba castellanii belonging to the T4 genotype using amoebicidal assay and host cell cytotoxicity assay. Viability assays revealed that silver nanoparticles conjugated with amphotericin B (Amp-AgNPs) and nystatin (Nys-AgNPs) exhibited significant antiamoebic properties compared with drugs alone or AgNPs alone (P < 0.05) as determined by Trypan blue exclusion assay. In contrast, conjugation of fluconazole with AgNPs had limited effect on its antiamoebic properties. Notably, AgNP-coated drugs inhibited amoebae-mediated host cell cytotoxicity as determined by measuring lactate dehydrogenase release. Overall, here we present the development of a new formulation of more effective antiamoebic agents based on AgNPs coated with drugs that hold promise for future applications.
AB - Infectious diseases are the leading cause of morbidity and mortality, killing more than 15 million people worldwide. This is despite our advances in antimicrobial chemotherapy and supportive care. Nanoparticles offer a promising technology to enhance drug efficacy and formation of effective vehicles for drug delivery. Here, we conjugated amphotericin B, nystatin (macrocyclic polyenes), and fluconazole (azole) with silver nanoparticles. Silver-conjugated drugs were synthesized successfully and characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, and atomic force microscopy. Conjugated and unconjugated drugs were tested against Acanthamoeba castellanii belonging to the T4 genotype using amoebicidal assay and host cell cytotoxicity assay. Viability assays revealed that silver nanoparticles conjugated with amphotericin B (Amp-AgNPs) and nystatin (Nys-AgNPs) exhibited significant antiamoebic properties compared with drugs alone or AgNPs alone (P < 0.05) as determined by Trypan blue exclusion assay. In contrast, conjugation of fluconazole with AgNPs had limited effect on its antiamoebic properties. Notably, AgNP-coated drugs inhibited amoebae-mediated host cell cytotoxicity as determined by measuring lactate dehydrogenase release. Overall, here we present the development of a new formulation of more effective antiamoebic agents based on AgNPs coated with drugs that hold promise for future applications.
KW - Acanthamoeba
KW - Silver nanoparticles
KW - Amphotericin B
KW - Nystatin
KW - Fluconazole
UR - https://www.scopus.com/pages/publications/85037343993
U2 - 10.1007/s00436-017-5701-x
DO - 10.1007/s00436-017-5701-x
M3 - Article
C2 - 29218442
SN - 0932-0113
VL - 117
SP - 265
EP - 271
JO - Parasitology Research
JF - Parasitology Research
ER -