TY - JOUR
T1 - Silicate Scaling Formation: Impact of pH in High-Temperature Reservoir and Its Characterization Study
AU - Sazali, Rozana Azrina
AU - Sorbie, Kenneth Stuart
AU - Boak, Lorraine Scott
AU - Al Badri, Nurshazwani Shuhada
AU - Veny, Harumi
AU - Ab Hamid, Farah Hanim
AU - Zainal Abidin, Mohd Zaki
PY - 2022/9/30
Y1 - 2022/9/30
N2 - Silicate scaling tends to form and be aggravated during high pH Alkaline Surfactant Polymer (ASP) floods and this silicate scale deposition affects oil production. Hence, it is important to examine the conditions that lead to silicate scale forming. The severity of the silicate scaling reaction, the type and morphology of silica/silicate scale formed in an experimental ASP flood were studied for pH values 5, 8.5, and 11, whilst the temperature was kept constant at 90 ℃. In addition, the impact of calcium ion was studied and spectroscopic analyses were used to identify the extent of scaling reaction, morphology type and the functional group present in the precipitates. This was performed using imagery of the generated precipitates. It was observed that the silica/silicate scale is most severe at the highest pH and Ca:Mg molar ratios examined. Magnesium hydroxide and calcium hydroxide were observed to precipitate along with the silica and Mg-silicate/Ca-silicate scale at pH 11. The presence of calcium ions altered the morphology of the precipitates formed from amorphous to microcrystalline/crystalline. In conclusion, pH affects the type, morphology, and severity of the silica/silicate scale produced in the studied scaling system. The comprehensive and conclusive data showing how pH affects the silicate scaling reaction reported here are vital in providing the foundation to further investigate the management and prevention of this silicate scaling. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
AB - Silicate scaling tends to form and be aggravated during high pH Alkaline Surfactant Polymer (ASP) floods and this silicate scale deposition affects oil production. Hence, it is important to examine the conditions that lead to silicate scale forming. The severity of the silicate scaling reaction, the type and morphology of silica/silicate scale formed in an experimental ASP flood were studied for pH values 5, 8.5, and 11, whilst the temperature was kept constant at 90 ℃. In addition, the impact of calcium ion was studied and spectroscopic analyses were used to identify the extent of scaling reaction, morphology type and the functional group present in the precipitates. This was performed using imagery of the generated precipitates. It was observed that the silica/silicate scale is most severe at the highest pH and Ca:Mg molar ratios examined. Magnesium hydroxide and calcium hydroxide were observed to precipitate along with the silica and Mg-silicate/Ca-silicate scale at pH 11. The presence of calcium ions altered the morphology of the precipitates formed from amorphous to microcrystalline/crystalline. In conclusion, pH affects the type, morphology, and severity of the silica/silicate scale produced in the studied scaling system. The comprehensive and conclusive data showing how pH affects the silicate scaling reaction reported here are vital in providing the foundation to further investigate the management and prevention of this silicate scaling. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
KW - Process Chemistry and Technology
KW - Catalysis
KW - General Chemistry
U2 - 10.9767/bcrec.17.3.15290.661-682
DO - 10.9767/bcrec.17.3.15290.661-682
M3 - Article
SN - 1978-2993
VL - 17
SP - 661
EP - 682
JO - Bulletin of Chemical Reaction Engineering & Catalysis
JF - Bulletin of Chemical Reaction Engineering & Catalysis
IS - 3
ER -