TY - JOUR
T1 - Sensitivity of particle sizing by ultrasonic attenuation spectroscopy to material properties
AU - Mougin, Patricia
AU - Wilkinson, Derek
AU - Roberts, Kevin J.
AU - Jack, Robert
AU - Kippax, Paul
PY - 2003/9/30
Y1 - 2003/9/30
N2 - Ultrasonic attenuation spectroscopy is a recently developed technique for rapid characterisation of particulate suspensions at high concentrations. Implementation of the full Epstein-Carhart-Allegra-Hawley model, which is used to transform ultrasound attenuation measurements into particle size and concentration information, requires knowledge of seven physical properties of the particulate phase and of a further seven properties of the continuous phase. Reliable data are not always available for all these properties. In this study, an assessment is made of the influence of inaccuracy in the physical properties on the recovered values of particle size and concentration. Two systems of organic crystals, glutamic acid crystals in aqueous solution of glutamic acid and monosodium glutamate crystals in aqueous solution of monosodium glutamate, are investigated over sizes from 1 to 100 µm. It is found that the same properties are significant for both material systems generally. These are the densities of both phases, shear rigidity of the particles, and sound speed and attenuation of the continuous phase. For these material systems, the size and concentration returned by analysis of ultrasound attenuation are insensitive to several properties which are required for the full Epstein-Carhart-Allegra-Hawley model: thermal dilation, thermal conductivity and heat capacity of both phases, and sound attenuation of the particulate phase. © 2003 Elsevier B.V. All rights reserved.
AB - Ultrasonic attenuation spectroscopy is a recently developed technique for rapid characterisation of particulate suspensions at high concentrations. Implementation of the full Epstein-Carhart-Allegra-Hawley model, which is used to transform ultrasound attenuation measurements into particle size and concentration information, requires knowledge of seven physical properties of the particulate phase and of a further seven properties of the continuous phase. Reliable data are not always available for all these properties. In this study, an assessment is made of the influence of inaccuracy in the physical properties on the recovered values of particle size and concentration. Two systems of organic crystals, glutamic acid crystals in aqueous solution of glutamic acid and monosodium glutamate crystals in aqueous solution of monosodium glutamate, are investigated over sizes from 1 to 100 µm. It is found that the same properties are significant for both material systems generally. These are the densities of both phases, shear rigidity of the particles, and sound speed and attenuation of the continuous phase. For these material systems, the size and concentration returned by analysis of ultrasound attenuation are insensitive to several properties which are required for the full Epstein-Carhart-Allegra-Hawley model: thermal dilation, thermal conductivity and heat capacity of both phases, and sound attenuation of the particulate phase. © 2003 Elsevier B.V. All rights reserved.
KW - Accuracy
KW - Particle characterisation
KW - Sensitivity
KW - Ultrasound particle sizing
UR - http://www.scopus.com/inward/record.url?scp=0142089680&partnerID=8YFLogxK
U2 - 10.1016/j.powtec.2003.08.051
DO - 10.1016/j.powtec.2003.08.051
M3 - Article
SN - 0032-5910
VL - 134
SP - 243
EP - 248
JO - Powder Technology
JF - Powder Technology
IS - 3
ER -