Abstract
The analysis of diffusion processes in financial models is crucially dependent on the form of the drift and diffusion coefficient functions. A new model for a stock market index process is proposed in which the index is decomposed into an average growth process and an ergodic diffusion. The ergodic diffusion part of the model is not directly observable. A methodology is developed for estimating and testing the coefficient functions of this unobserved diffusion process. The estimation is based on the observations of the index process and uses semiparametric and non-parametric techniques. The testing is performed via the wild bootstrap resampling technique. The method is illustrated on SP 500 index data.
Original language | English |
---|---|
Pages (from-to) | 81-92 |
Number of pages | 12 |
Journal | Quantitative Finance |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - Feb 2008 |
Keywords
- Bootstrap
- Continuous-time financial models
- Diffusion
- Identification
- Kernel smoothing
- Semiparametric methods