Abstract
The theory of the set-theoretic Yang-Baxter equation is reviewed from a purely algebraic point of view. We recall certain algebraic structures called shelves, racks and quandles. These objects satisfy a self-distributivity condition and lead to solutions of the Yang-Baxter equation. We also recall that non-involutive solutions of the braid equation are obtained from shelf and rack solutions by a suitable parametric twist, whereas all involutive set-theoretic solutions are reduced to the flip map via a parametric twist. The notion of braces is also presented as the suitable algebraic structure associated to involutive set-theoretic solutions. The quantum algebra as well as the integrability of Baxterized involutive set-theoretic solutions is also discussed. The explicit form of the Drinfel'd twist is presented allowing the derivation of general set-theoretic solutions.
Original language | English |
---|---|
DOIs | |
Publication status | Published - 30 Sept 2024 |
Keywords
- math-ph
- math.MP
- math.QA
- quant-ph