Abstract
History matching of a reservoir model is always a difficult task. In some fields, we can use time-lapse (4D) seismic data to detect production-induced changes as a complement to more conventional production data. In seismic history matching, we predict these data and compare to observations. Observed time-lapse data often consist of relative measures of change, which require normalization. We investigate different normalization approaches, based on predicted 4D data, and assess their impact on history matching.
We apply the approach to the Nelson field in which four surveys are available over 9 years of production. We normalize the 4D signature in a number of ways. First, we use predictions of 4D signature from vertical wells that match production, and we derive a normalization function. As an alternative, we use crossplots of the full-field prediction against observation. Normalized observations are used in an automatic-history-matching process, in which the model is updated. We analyze the results of the two normalization approaches and compare against the case of just using production data.
The result shows that when we use 4D data normalized to wells, we obtain 49% reduced misfit along with 36% improvement in predictions. Also over the whole reservoir, 8 and 7% reduction of misfits for 4D seismic are obtained in history and prediction periods, respectively. When we use only production data, the production history match is improved to a similar degree (45%), but in predictions, the improvement is only 25% and the 4D seismic misfit is 10% worse.
Finding the unswept areas in the reservoir is always a challenge in reservoir management. By using 4D data in history matching, we can better predict reservoir behavior and identify regions of remaining oil.
Original language | English |
---|---|
Pages (from-to) | 621-633 |
Number of pages | 13 |
Journal | SPE Reservoir Evaluation and Engineering |
Volume | 14 |
Issue number | 5 |
DOIs | |
Publication status | Published - Oct 2011 |