Secure SWIPT by Exploiting Constructive Interference and Artificial Noise

Muhammad R. A. Khandaker, Christos Masouros, Kai-Kit Wong, Stelios Timotheou

Research output: Contribution to journalArticle

8 Citations (Scopus)
12 Downloads (Pure)

Abstract

This paper studies interference exploitation techniques for secure beamforming design in simultaneous wireless information and power transfer (SWIPT) in multiple-input single-output (MISO) systems. In particular, multiuser interference (MUI) and artificially generated noise signals are designed as constructive to the information receivers (IRs) yet kept disruptive to potential eavesdropping by the energy receivers (ERs). The objective is to improve the received signal-to-interference and noise ratio (SINR) at the IRs by exploiting the MUI and AN power in an attempt to minimize the total transmit power. We first propose second-order cone programming based solutions for the perfect channel state information (CSI) case by defining strong upper and lower bounds on the energy harvesting (EH) constraints. We then provide semidefinite programming based solutions for the problems. In addition, we also solve the worst-case harvested energy maximization problem under the proposed bounds. Finally, robust beamforming approaches based on the above are derived for the case of imperfect CSI. Our results demonstrate that the proposed constructive interference precoding schemes yield huge saving in transmit power over conventional interference management schemes. Most importantly, they show that, while the statistical constraints of conventional approaches may lead to instantaneous SINR as well as EH outages, the instantaneous constraints of our approaches guarantee both constraints at every symbol period.

Original languageEnglish
JournalIEEE Transactions on Communications
Early online date8 Oct 2018
DOIs
Publication statusE-pub ahead of print - 8 Oct 2018

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Secure SWIPT by Exploiting Constructive Interference and Artificial Noise'. Together they form a unique fingerprint.

  • Cite this