TY - JOUR
T1 - Secure On-Chip Communication Architecture for Reconfigurable Multi-Core Systems
AU - Saeed, Ahmed
AU - Ahmadinia, Ali
AU - Just, Mike
PY - 2016/4/14
Y1 - 2016/4/14
N2 - Security is becoming the primary concern in today’s embedded systems. Network-on-chip (NoC)-based communication architectures have emerged as an alternative to shared bus mechanism in multi-core system-on-chip (SoC) devices and the increasing number and functionality of processing cores have made such systems vulnerable to security attacks. In this paper, a secure communication architecture has been presented by designing an identity and address verification (IAV) security module, which is embedded in each router at the communication level. IAV module verifies the identity and address range to be accessed by incoming and outgoing data packets in an NoC-based multi-core shared memory architecture. Our IAV module is implemented on an FPGA device for functional verification and evaluated in terms of its area and power consumption overhead. For FPGA-based systems, the IAV module can be reconfigured at run-time through partial reconfiguration. In addition, a cycle-accurate simulation is carried out to analyze the performance and total network energy consumption overhead for different network configurations. The proposed IAV module has presented reduced area and power consumption overhead when compared with similar existing solutions.
AB - Security is becoming the primary concern in today’s embedded systems. Network-on-chip (NoC)-based communication architectures have emerged as an alternative to shared bus mechanism in multi-core system-on-chip (SoC) devices and the increasing number and functionality of processing cores have made such systems vulnerable to security attacks. In this paper, a secure communication architecture has been presented by designing an identity and address verification (IAV) security module, which is embedded in each router at the communication level. IAV module verifies the identity and address range to be accessed by incoming and outgoing data packets in an NoC-based multi-core shared memory architecture. Our IAV module is implemented on an FPGA device for functional verification and evaluated in terms of its area and power consumption overhead. For FPGA-based systems, the IAV module can be reconfigured at run-time through partial reconfiguration. In addition, a cycle-accurate simulation is carried out to analyze the performance and total network energy consumption overhead for different network configurations. The proposed IAV module has presented reduced area and power consumption overhead when compared with similar existing solutions.
U2 - 10.1142/S0218126616500894
DO - 10.1142/S0218126616500894
M3 - Article
SN - 0218-1266
JO - Journal of Circuits, Systems and Computers
JF - Journal of Circuits, Systems and Computers
M1 - 1650089
ER -